| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oprpiece1.1 | 
							 |-  A e. RR  | 
						
						
							| 2 | 
							
								
							 | 
							oprpiece1.2 | 
							 |-  B e. RR  | 
						
						
							| 3 | 
							
								
							 | 
							oprpiece1.3 | 
							 |-  A <_ B  | 
						
						
							| 4 | 
							
								
							 | 
							oprpiece1.4 | 
							 |-  R e. _V  | 
						
						
							| 5 | 
							
								
							 | 
							oprpiece1.5 | 
							 |-  S e. _V  | 
						
						
							| 6 | 
							
								
							 | 
							oprpiece1.6 | 
							 |-  K e. ( A [,] B )  | 
						
						
							| 7 | 
							
								
							 | 
							oprpiece1.7 | 
							 |-  F = ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) )  | 
						
						
							| 8 | 
							
								
							 | 
							oprpiece1.9 | 
							 |-  ( x = K -> R = P )  | 
						
						
							| 9 | 
							
								
							 | 
							oprpiece1.10 | 
							 |-  ( x = K -> S = Q )  | 
						
						
							| 10 | 
							
								
							 | 
							oprpiece1.11 | 
							 |-  ( y e. C -> P = Q )  | 
						
						
							| 11 | 
							
								
							 | 
							oprpiece1.12 | 
							 |-  G = ( x e. ( K [,] B ) , y e. C |-> S )  | 
						
						
							| 12 | 
							
								1
							 | 
							rexri | 
							 |-  A e. RR*  | 
						
						
							| 13 | 
							
								2
							 | 
							rexri | 
							 |-  B e. RR*  | 
						
						
							| 14 | 
							
								
							 | 
							ubicc2 | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) )  | 
						
						
							| 15 | 
							
								12 13 3 14
							 | 
							mp3an | 
							 |-  B e. ( A [,] B )  | 
						
						
							| 16 | 
							
								
							 | 
							iccss2 | 
							 |-  ( ( K e. ( A [,] B ) /\ B e. ( A [,] B ) ) -> ( K [,] B ) C_ ( A [,] B ) )  | 
						
						
							| 17 | 
							
								6 15 16
							 | 
							mp2an | 
							 |-  ( K [,] B ) C_ ( A [,] B )  | 
						
						
							| 18 | 
							
								
							 | 
							ssid | 
							 |-  C C_ C  | 
						
						
							| 19 | 
							
								
							 | 
							resmpo | 
							 |-  ( ( ( K [,] B ) C_ ( A [,] B ) /\ C C_ C ) -> ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( K [,] B ) X. C ) ) = ( x e. ( K [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) )  | 
						
						
							| 20 | 
							
								17 18 19
							 | 
							mp2an | 
							 |-  ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( K [,] B ) X. C ) ) = ( x e. ( K [,] B ) , y e. C |-> if ( x <_ K , R , S ) )  | 
						
						
							| 21 | 
							
								7
							 | 
							reseq1i | 
							 |-  ( F |` ( ( K [,] B ) X. C ) ) = ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( K [,] B ) X. C ) )  | 
						
						
							| 22 | 
							
								10
							 | 
							ad2antlr | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> P = Q )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> x <_ K )  | 
						
						
							| 24 | 
							
								1 2
							 | 
							elicc2i | 
							 |-  ( K e. ( A [,] B ) <-> ( K e. RR /\ A <_ K /\ K <_ B ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							simp1bi | 
							 |-  ( K e. ( A [,] B ) -> K e. RR )  | 
						
						
							| 26 | 
							
								6 25
							 | 
							ax-mp | 
							 |-  K e. RR  | 
						
						
							| 27 | 
							
								26 2
							 | 
							elicc2i | 
							 |-  ( x e. ( K [,] B ) <-> ( x e. RR /\ K <_ x /\ x <_ B ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							simp2bi | 
							 |-  ( x e. ( K [,] B ) -> K <_ x )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2antrr | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> K <_ x )  | 
						
						
							| 30 | 
							
								27
							 | 
							simp1bi | 
							 |-  ( x e. ( K [,] B ) -> x e. RR )  | 
						
						
							| 31 | 
							
								30
							 | 
							ad2antrr | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> x e. RR )  | 
						
						
							| 32 | 
							
								
							 | 
							letri3 | 
							 |-  ( ( x e. RR /\ K e. RR ) -> ( x = K <-> ( x <_ K /\ K <_ x ) ) )  | 
						
						
							| 33 | 
							
								31 26 32
							 | 
							sylancl | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> ( x = K <-> ( x <_ K /\ K <_ x ) ) )  | 
						
						
							| 34 | 
							
								23 29 33
							 | 
							mpbir2and | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> x = K )  | 
						
						
							| 35 | 
							
								34 8
							 | 
							syl | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> R = P )  | 
						
						
							| 36 | 
							
								34 9
							 | 
							syl | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> S = Q )  | 
						
						
							| 37 | 
							
								22 35 36
							 | 
							3eqtr4d | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> R = S )  | 
						
						
							| 38 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ -. x <_ K ) -> S = S )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							ifeqda | 
							 |-  ( ( x e. ( K [,] B ) /\ y e. C ) -> if ( x <_ K , R , S ) = S )  | 
						
						
							| 40 | 
							
								39
							 | 
							mpoeq3ia | 
							 |-  ( x e. ( K [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) = ( x e. ( K [,] B ) , y e. C |-> S )  | 
						
						
							| 41 | 
							
								11 40
							 | 
							eqtr4i | 
							 |-  G = ( x e. ( K [,] B ) , y e. C |-> if ( x <_ K , R , S ) )  | 
						
						
							| 42 | 
							
								20 21 41
							 | 
							3eqtr4i | 
							 |-  ( F |` ( ( K [,] B ) X. C ) ) = G  |