| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovres |  |-  ( ( A e. C /\ B e. D ) -> ( A ( F |` ( C X. D ) ) B ) = ( A F B ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) /\ ( A e. C /\ B e. D ) ) -> ( A ( F |` ( C X. D ) ) B ) = ( A F B ) ) | 
						
							| 3 |  | fndm |  |-  ( G Fn ( C X. D ) -> dom G = ( C X. D ) ) | 
						
							| 4 | 3 | reseq2d |  |-  ( G Fn ( C X. D ) -> ( F |` dom G ) = ( F |` ( C X. D ) ) ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) -> ( F |` dom G ) = ( F |` ( C X. D ) ) ) | 
						
							| 6 |  | funssres |  |-  ( ( Fun F /\ G C_ F ) -> ( F |` dom G ) = G ) | 
						
							| 7 | 6 | 3adant2 |  |-  ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) -> ( F |` dom G ) = G ) | 
						
							| 8 | 5 7 | eqtr3d |  |-  ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) -> ( F |` ( C X. D ) ) = G ) | 
						
							| 9 | 8 | oveqd |  |-  ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) -> ( A ( F |` ( C X. D ) ) B ) = ( A G B ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) /\ ( A e. C /\ B e. D ) ) -> ( A ( F |` ( C X. D ) ) B ) = ( A G B ) ) | 
						
							| 11 | 2 10 | eqtr3d |  |-  ( ( ( Fun F /\ G Fn ( C X. D ) /\ G C_ F ) /\ ( A e. C /\ B e. D ) ) -> ( A F B ) = ( A G B ) ) |