| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsrcrng.o |  |-  O = ( ( I ordPwSer R ) ` T ) | 
						
							| 2 |  | opsrcrng.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | opsrcrng.r |  |-  ( ph -> R e. CRing ) | 
						
							| 4 |  | opsrcrng.t |  |-  ( ph -> T C_ ( I X. I ) ) | 
						
							| 5 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 6 | 5 2 3 | psrassa |  |-  ( ph -> ( I mPwSer R ) e. AssAlg ) | 
						
							| 7 |  | eqidd |  |-  ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) ) | 
						
							| 8 | 5 1 4 | opsrbas |  |-  ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` O ) ) | 
						
							| 9 | 5 1 4 | opsrplusg |  |-  ( ph -> ( +g ` ( I mPwSer R ) ) = ( +g ` O ) ) | 
						
							| 10 | 9 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( I mPwSer R ) ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( +g ` ( I mPwSer R ) ) y ) = ( x ( +g ` O ) y ) ) | 
						
							| 11 | 5 1 4 | opsrmulr |  |-  ( ph -> ( .r ` ( I mPwSer R ) ) = ( .r ` O ) ) | 
						
							| 12 | 11 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` ( I mPwSer R ) ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( .r ` ( I mPwSer R ) ) y ) = ( x ( .r ` O ) y ) ) | 
						
							| 13 | 5 2 3 | psrsca |  |-  ( ph -> R = ( Scalar ` ( I mPwSer R ) ) ) | 
						
							| 14 | 5 1 4 2 3 | opsrsca |  |-  ( ph -> R = ( Scalar ` O ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 16 | 5 1 4 | opsrvsca |  |-  ( ph -> ( .s ` ( I mPwSer R ) ) = ( .s ` O ) ) | 
						
							| 17 | 16 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( .s ` ( I mPwSer R ) ) y ) = ( x ( .s ` O ) y ) ) | 
						
							| 18 | 7 8 10 12 13 14 15 17 | assapropd |  |-  ( ph -> ( ( I mPwSer R ) e. AssAlg <-> O e. AssAlg ) ) | 
						
							| 19 | 6 18 | mpbid |  |-  ( ph -> O e. AssAlg ) |