| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsrbas.s |
|- S = ( I mPwSer R ) |
| 2 |
|
opsrbas.o |
|- O = ( ( I ordPwSer R ) ` T ) |
| 3 |
|
opsrbas.t |
|- ( ph -> T C_ ( I X. I ) ) |
| 4 |
|
opsrbaslem.1 |
|- E = Slot ( E ` ndx ) |
| 5 |
|
opsrbaslem.2 |
|- ( E ` ndx ) =/= ( le ` ndx ) |
| 6 |
4 5
|
setsnid |
|- ( E ` S ) = ( E ` ( S sSet <. ( le ` ndx ) , ( le ` O ) >. ) ) |
| 7 |
|
eqid |
|- ( le ` O ) = ( le ` O ) |
| 8 |
|
simprl |
|- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> I e. _V ) |
| 9 |
|
simprr |
|- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> R e. _V ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> T C_ ( I X. I ) ) |
| 11 |
1 2 7 8 9 10
|
opsrval2 |
|- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> O = ( S sSet <. ( le ` ndx ) , ( le ` O ) >. ) ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> ( E ` O ) = ( E ` ( S sSet <. ( le ` ndx ) , ( le ` O ) >. ) ) ) |
| 13 |
6 12
|
eqtr4id |
|- ( ( ph /\ ( I e. _V /\ R e. _V ) ) -> ( E ` S ) = ( E ` O ) ) |
| 14 |
|
0fv |
|- ( (/) ` T ) = (/) |
| 15 |
14
|
eqcomi |
|- (/) = ( (/) ` T ) |
| 16 |
|
reldmpsr |
|- Rel dom mPwSer |
| 17 |
16
|
ovprc |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = (/) ) |
| 18 |
|
reldmopsr |
|- Rel dom ordPwSer |
| 19 |
18
|
ovprc |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I ordPwSer R ) = (/) ) |
| 20 |
19
|
fveq1d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( ( I ordPwSer R ) ` T ) = ( (/) ` T ) ) |
| 21 |
15 17 20
|
3eqtr4a |
|- ( -. ( I e. _V /\ R e. _V ) -> ( I mPwSer R ) = ( ( I ordPwSer R ) ` T ) ) |
| 22 |
21 1 2
|
3eqtr4g |
|- ( -. ( I e. _V /\ R e. _V ) -> S = O ) |
| 23 |
22
|
fveq2d |
|- ( -. ( I e. _V /\ R e. _V ) -> ( E ` S ) = ( E ` O ) ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ -. ( I e. _V /\ R e. _V ) ) -> ( E ` S ) = ( E ` O ) ) |
| 25 |
13 24
|
pm2.61dan |
|- ( ph -> ( E ` S ) = ( E ` O ) ) |