| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opsrring.o |
|- O = ( ( I ordPwSer R ) ` T ) |
| 2 |
|
opsrring.i |
|- ( ph -> I e. V ) |
| 3 |
|
opsrring.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
opsrring.t |
|- ( ph -> T C_ ( I X. I ) ) |
| 5 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 6 |
5 2 3
|
psrlmod |
|- ( ph -> ( I mPwSer R ) e. LMod ) |
| 7 |
|
eqidd |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) ) |
| 8 |
5 1 4
|
opsrbas |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` O ) ) |
| 9 |
5 1 4
|
opsrplusg |
|- ( ph -> ( +g ` ( I mPwSer R ) ) = ( +g ` O ) ) |
| 10 |
9
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` ( I mPwSer R ) ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( +g ` ( I mPwSer R ) ) y ) = ( x ( +g ` O ) y ) ) |
| 11 |
5 2 3
|
psrsca |
|- ( ph -> R = ( Scalar ` ( I mPwSer R ) ) ) |
| 12 |
5 1 4 2 3
|
opsrsca |
|- ( ph -> R = ( Scalar ` O ) ) |
| 13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 14 |
5 1 4
|
opsrvsca |
|- ( ph -> ( .s ` ( I mPwSer R ) ) = ( .s ` O ) ) |
| 15 |
14
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( .s ` ( I mPwSer R ) ) y ) = ( x ( .s ` O ) y ) ) |
| 16 |
7 8 10 11 12 13 15
|
lmodpropd |
|- ( ph -> ( ( I mPwSer R ) e. LMod <-> O e. LMod ) ) |
| 17 |
6 16
|
mpbid |
|- ( ph -> O e. LMod ) |