| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsrso.o |  |-  O = ( ( I ordPwSer R ) ` T ) | 
						
							| 2 |  | opsrso.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | opsrso.r |  |-  ( ph -> R e. Toset ) | 
						
							| 4 |  | opsrso.t |  |-  ( ph -> T C_ ( I X. I ) ) | 
						
							| 5 |  | opsrso.w |  |-  ( ph -> T We I ) | 
						
							| 6 |  | opsrso.l |  |-  .<_ = ( lt ` O ) | 
						
							| 7 |  | opsrso.b |  |-  B = ( Base ` O ) | 
						
							| 8 | 1 2 3 4 5 | opsrtos |  |-  ( ph -> O e. Toset ) | 
						
							| 9 |  | eqid |  |-  ( le ` O ) = ( le ` O ) | 
						
							| 10 | 7 9 6 | tosso |  |-  ( O e. Toset -> ( O e. Toset <-> ( .<_ Or B /\ ( _I |` B ) C_ ( le ` O ) ) ) ) | 
						
							| 11 | 10 | ibi |  |-  ( O e. Toset -> ( .<_ Or B /\ ( _I |` B ) C_ ( le ` O ) ) ) | 
						
							| 12 | 8 11 | syl |  |-  ( ph -> ( .<_ Or B /\ ( _I |` B ) C_ ( le ` O ) ) ) | 
						
							| 13 | 12 | simpld |  |-  ( ph -> .<_ Or B ) |