| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsrso.o |  |-  O = ( ( I ordPwSer R ) ` T ) | 
						
							| 2 |  | opsrso.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | opsrso.r |  |-  ( ph -> R e. Toset ) | 
						
							| 4 |  | opsrso.t |  |-  ( ph -> T C_ ( I X. I ) ) | 
						
							| 5 |  | opsrso.w |  |-  ( ph -> T We I ) | 
						
							| 6 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 7 |  | eqid |  |-  ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) | 
						
							| 8 |  | eqid |  |-  ( lt ` R ) = ( lt ` R ) | 
						
							| 9 |  | eqid |  |-  ( T  | 
						
							| 10 |  | eqid |  |-  { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 11 |  | biid |  |-  ( E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T  ( x ` w ) = ( y ` w ) ) ) <-> E. z e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( ( x ` z ) ( lt ` R ) ( y ` z ) /\ A. w e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ( w ( T  ( x ` w ) = ( y ` w ) ) ) ) | 
						
							| 12 |  | eqid |  |-  ( le ` O ) = ( le ` O ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | opsrtoslem2 |  |-  ( ph -> O e. Toset ) |