| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opsrso.o |  |-  O = ( ( I ordPwSer R ) ` T ) | 
						
							| 2 |  | opsrso.i |  |-  ( ph -> I e. V ) | 
						
							| 3 |  | opsrso.r |  |-  ( ph -> R e. Toset ) | 
						
							| 4 |  | opsrso.t |  |-  ( ph -> T C_ ( I X. I ) ) | 
						
							| 5 |  | opsrso.w |  |-  ( ph -> T We I ) | 
						
							| 6 |  | opsrtoslem.s |  |-  S = ( I mPwSer R ) | 
						
							| 7 |  | opsrtoslem.b |  |-  B = ( Base ` S ) | 
						
							| 8 |  | opsrtoslem.q |  |-  .< = ( lt ` R ) | 
						
							| 9 |  | opsrtoslem.c |  |-  C = ( T  | 
						
							| 10 |  | opsrtoslem.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 11 |  | opsrtoslem.ps |  |-  ( ps <-> E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) ) | 
						
							| 12 |  | opsrtoslem.l |  |-  .<_ = ( le ` O ) | 
						
							| 13 | 6 1 7 8 9 10 12 4 | opsrle |  |-  ( ph -> .<_ = { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } ) | 
						
							| 14 |  | unopab |  |-  ( { <. x , y >. | ( { x , y } C_ B /\ ps ) } u. { <. x , y >. | ( { x , y } C_ B /\ x = y ) } ) = { <. x , y >. | ( ( { x , y } C_ B /\ ps ) \/ ( { x , y } C_ B /\ x = y ) ) } | 
						
							| 15 |  | inopab |  |-  ( { <. x , y >. | ps } i^i { <. x , y >. | ( x e. B /\ y e. B ) } ) = { <. x , y >. | ( ps /\ ( x e. B /\ y e. B ) ) } | 
						
							| 16 |  | df-xp |  |-  ( B X. B ) = { <. x , y >. | ( x e. B /\ y e. B ) } | 
						
							| 17 | 16 | ineq2i |  |-  ( { <. x , y >. | ps } i^i ( B X. B ) ) = ( { <. x , y >. | ps } i^i { <. x , y >. | ( x e. B /\ y e. B ) } ) | 
						
							| 18 |  | vex |  |-  x e. _V | 
						
							| 19 |  | vex |  |-  y e. _V | 
						
							| 20 | 18 19 | prss |  |-  ( ( x e. B /\ y e. B ) <-> { x , y } C_ B ) | 
						
							| 21 | 20 | anbi1i |  |-  ( ( ( x e. B /\ y e. B ) /\ ps ) <-> ( { x , y } C_ B /\ ps ) ) | 
						
							| 22 |  | ancom |  |-  ( ( ( x e. B /\ y e. B ) /\ ps ) <-> ( ps /\ ( x e. B /\ y e. B ) ) ) | 
						
							| 23 | 21 22 | bitr3i |  |-  ( ( { x , y } C_ B /\ ps ) <-> ( ps /\ ( x e. B /\ y e. B ) ) ) | 
						
							| 24 | 23 | opabbii |  |-  { <. x , y >. | ( { x , y } C_ B /\ ps ) } = { <. x , y >. | ( ps /\ ( x e. B /\ y e. B ) ) } | 
						
							| 25 | 15 17 24 | 3eqtr4i |  |-  ( { <. x , y >. | ps } i^i ( B X. B ) ) = { <. x , y >. | ( { x , y } C_ B /\ ps ) } | 
						
							| 26 |  | opabresid |  |-  ( _I |` B ) = { <. x , y >. | ( x e. B /\ y = x ) } | 
						
							| 27 |  | equcom |  |-  ( x = y <-> y = x ) | 
						
							| 28 | 27 | anbi2i |  |-  ( ( x e. B /\ x = y ) <-> ( x e. B /\ y = x ) ) | 
						
							| 29 |  | eleq1w |  |-  ( x = y -> ( x e. B <-> y e. B ) ) | 
						
							| 30 | 29 | biimpac |  |-  ( ( x e. B /\ x = y ) -> y e. B ) | 
						
							| 31 | 30 | pm4.71i |  |-  ( ( x e. B /\ x = y ) <-> ( ( x e. B /\ x = y ) /\ y e. B ) ) | 
						
							| 32 | 28 31 | bitr3i |  |-  ( ( x e. B /\ y = x ) <-> ( ( x e. B /\ x = y ) /\ y e. B ) ) | 
						
							| 33 |  | an32 |  |-  ( ( ( x e. B /\ x = y ) /\ y e. B ) <-> ( ( x e. B /\ y e. B ) /\ x = y ) ) | 
						
							| 34 | 20 | anbi1i |  |-  ( ( ( x e. B /\ y e. B ) /\ x = y ) <-> ( { x , y } C_ B /\ x = y ) ) | 
						
							| 35 | 32 33 34 | 3bitri |  |-  ( ( x e. B /\ y = x ) <-> ( { x , y } C_ B /\ x = y ) ) | 
						
							| 36 | 35 | opabbii |  |-  { <. x , y >. | ( x e. B /\ y = x ) } = { <. x , y >. | ( { x , y } C_ B /\ x = y ) } | 
						
							| 37 | 26 36 | eqtri |  |-  ( _I |` B ) = { <. x , y >. | ( { x , y } C_ B /\ x = y ) } | 
						
							| 38 | 25 37 | uneq12i |  |-  ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) = ( { <. x , y >. | ( { x , y } C_ B /\ ps ) } u. { <. x , y >. | ( { x , y } C_ B /\ x = y ) } ) | 
						
							| 39 | 11 | orbi1i |  |-  ( ( ps \/ x = y ) <-> ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) | 
						
							| 40 | 39 | anbi2i |  |-  ( ( { x , y } C_ B /\ ( ps \/ x = y ) ) <-> ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) ) | 
						
							| 41 |  | andi |  |-  ( ( { x , y } C_ B /\ ( ps \/ x = y ) ) <-> ( ( { x , y } C_ B /\ ps ) \/ ( { x , y } C_ B /\ x = y ) ) ) | 
						
							| 42 | 40 41 | bitr3i |  |-  ( ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) <-> ( ( { x , y } C_ B /\ ps ) \/ ( { x , y } C_ B /\ x = y ) ) ) | 
						
							| 43 | 42 | opabbii |  |-  { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = { <. x , y >. | ( ( { x , y } C_ B /\ ps ) \/ ( { x , y } C_ B /\ x = y ) ) } | 
						
							| 44 | 14 38 43 | 3eqtr4ri |  |-  { <. x , y >. | ( { x , y } C_ B /\ ( E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) \/ x = y ) ) } = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) | 
						
							| 45 | 13 44 | eqtrdi |  |-  ( ph -> .<_ = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) ) |