Step |
Hyp |
Ref |
Expression |
1 |
|
opsrso.o |
|- O = ( ( I ordPwSer R ) ` T ) |
2 |
|
opsrso.i |
|- ( ph -> I e. V ) |
3 |
|
opsrso.r |
|- ( ph -> R e. Toset ) |
4 |
|
opsrso.t |
|- ( ph -> T C_ ( I X. I ) ) |
5 |
|
opsrso.w |
|- ( ph -> T We I ) |
6 |
|
opsrtoslem.s |
|- S = ( I mPwSer R ) |
7 |
|
opsrtoslem.b |
|- B = ( Base ` S ) |
8 |
|
opsrtoslem.q |
|- .< = ( lt ` R ) |
9 |
|
opsrtoslem.c |
|- C = ( T |
10 |
|
opsrtoslem.d |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
11 |
|
opsrtoslem.ps |
|- ( ps <-> E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) ) |
12 |
|
opsrtoslem.l |
|- .<_ = ( le ` O ) |
13 |
2 2
|
xpexd |
|- ( ph -> ( I X. I ) e. _V ) |
14 |
13 4
|
ssexd |
|- ( ph -> T e. _V ) |
15 |
9 10 2 14 5
|
ltbwe |
|- ( ph -> C We D ) |
16 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
17 |
|
eqid |
|- ( le ` R ) = ( le ` R ) |
18 |
16 17 8
|
tosso |
|- ( R e. Toset -> ( R e. Toset <-> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) ) ) |
19 |
18
|
ibi |
|- ( R e. Toset -> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) ) |
20 |
3 19
|
syl |
|- ( ph -> ( .< Or ( Base ` R ) /\ ( _I |` ( Base ` R ) ) C_ ( le ` R ) ) ) |
21 |
20
|
simpld |
|- ( ph -> .< Or ( Base ` R ) ) |
22 |
11
|
opabbii |
|- { <. x , y >. | ps } = { <. x , y >. | E. z e. D ( ( x ` z ) .< ( y ` z ) /\ A. w e. D ( w C z -> ( x ` w ) = ( y ` w ) ) ) } |
23 |
22
|
wemapso |
|- ( ( C We D /\ .< Or ( Base ` R ) ) -> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) |
24 |
15 21 23
|
syl2anc |
|- ( ph -> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) |
25 |
6 16 10 7 2
|
psrbas |
|- ( ph -> B = ( ( Base ` R ) ^m D ) ) |
26 |
|
soeq2 |
|- ( B = ( ( Base ` R ) ^m D ) -> ( { <. x , y >. | ps } Or B <-> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) ) |
27 |
25 26
|
syl |
|- ( ph -> ( { <. x , y >. | ps } Or B <-> { <. x , y >. | ps } Or ( ( Base ` R ) ^m D ) ) ) |
28 |
24 27
|
mpbird |
|- ( ph -> { <. x , y >. | ps } Or B ) |
29 |
|
soinxp |
|- ( { <. x , y >. | ps } Or B <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) |
30 |
28 29
|
sylib |
|- ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) |
31 |
1
|
fvexi |
|- O e. _V |
32 |
|
eqid |
|- ( lt ` O ) = ( lt ` O ) |
33 |
12 32
|
pltfval |
|- ( O e. _V -> ( lt ` O ) = ( .<_ \ _I ) ) |
34 |
31 33
|
ax-mp |
|- ( lt ` O ) = ( .<_ \ _I ) |
35 |
|
difundir |
|- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. ( ( _I |` B ) \ _I ) ) |
36 |
|
resss |
|- ( _I |` B ) C_ _I |
37 |
|
ssdif0 |
|- ( ( _I |` B ) C_ _I <-> ( ( _I |` B ) \ _I ) = (/) ) |
38 |
36 37
|
mpbi |
|- ( ( _I |` B ) \ _I ) = (/) |
39 |
38
|
uneq2i |
|- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. ( ( _I |` B ) \ _I ) ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. (/) ) |
40 |
|
un0 |
|- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) u. (/) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) |
41 |
35 39 40
|
3eqtri |
|- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) |
42 |
1 2 3 4 5 6 7 8 9 10 11 12
|
opsrtoslem1 |
|- ( ph -> .<_ = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) ) |
43 |
42
|
difeq1d |
|- ( ph -> ( .<_ \ _I ) = ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) \ _I ) ) |
44 |
|
relinxp |
|- Rel ( { <. x , y >. | ps } i^i ( B X. B ) ) |
45 |
44
|
a1i |
|- ( ph -> Rel ( { <. x , y >. | ps } i^i ( B X. B ) ) ) |
46 |
|
df-br |
|- ( a _I b <-> <. a , b >. e. _I ) |
47 |
|
vex |
|- b e. _V |
48 |
47
|
ideq |
|- ( a _I b <-> a = b ) |
49 |
46 48
|
bitr3i |
|- ( <. a , b >. e. _I <-> a = b ) |
50 |
|
brin |
|- ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> ( a { <. x , y >. | ps } a /\ a ( B X. B ) a ) ) |
51 |
50
|
simprbi |
|- ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> a ( B X. B ) a ) |
52 |
|
brxp |
|- ( a ( B X. B ) a <-> ( a e. B /\ a e. B ) ) |
53 |
52
|
simprbi |
|- ( a ( B X. B ) a -> a e. B ) |
54 |
51 53
|
syl |
|- ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> a e. B ) |
55 |
|
sonr |
|- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B /\ a e. B ) -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) |
56 |
55
|
ex |
|- ( ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B -> ( a e. B -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) ) |
57 |
30 54 56
|
syl2im |
|- ( ph -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) ) |
58 |
57
|
pm2.01d |
|- ( ph -> -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a ) |
59 |
|
breq2 |
|- ( a = b -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> a ( { <. x , y >. | ps } i^i ( B X. B ) ) b ) ) |
60 |
|
df-br |
|- ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) b <-> <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) |
61 |
59 60
|
bitrdi |
|- ( a = b -> ( a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) ) |
62 |
61
|
notbid |
|- ( a = b -> ( -. a ( { <. x , y >. | ps } i^i ( B X. B ) ) a <-> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) ) |
63 |
58 62
|
syl5ibcom |
|- ( ph -> ( a = b -> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) ) |
64 |
49 63
|
syl5bi |
|- ( ph -> ( <. a , b >. e. _I -> -. <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) ) ) |
65 |
64
|
con2d |
|- ( ph -> ( <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) -> -. <. a , b >. e. _I ) ) |
66 |
|
opex |
|- <. a , b >. e. _V |
67 |
|
eldif |
|- ( <. a , b >. e. ( _V \ _I ) <-> ( <. a , b >. e. _V /\ -. <. a , b >. e. _I ) ) |
68 |
66 67
|
mpbiran |
|- ( <. a , b >. e. ( _V \ _I ) <-> -. <. a , b >. e. _I ) |
69 |
65 68
|
syl6ibr |
|- ( ph -> ( <. a , b >. e. ( { <. x , y >. | ps } i^i ( B X. B ) ) -> <. a , b >. e. ( _V \ _I ) ) ) |
70 |
45 69
|
relssdv |
|- ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) C_ ( _V \ _I ) ) |
71 |
|
disj2 |
|- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) C_ ( _V \ _I ) ) |
72 |
70 71
|
sylibr |
|- ( ph -> ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) ) |
73 |
|
disj3 |
|- ( ( ( { <. x , y >. | ps } i^i ( B X. B ) ) i^i _I ) = (/) <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) ) |
74 |
72 73
|
sylib |
|- ( ph -> ( { <. x , y >. | ps } i^i ( B X. B ) ) = ( ( { <. x , y >. | ps } i^i ( B X. B ) ) \ _I ) ) |
75 |
41 43 74
|
3eqtr4a |
|- ( ph -> ( .<_ \ _I ) = ( { <. x , y >. | ps } i^i ( B X. B ) ) ) |
76 |
34 75
|
eqtrid |
|- ( ph -> ( lt ` O ) = ( { <. x , y >. | ps } i^i ( B X. B ) ) ) |
77 |
|
soeq1 |
|- ( ( lt ` O ) = ( { <. x , y >. | ps } i^i ( B X. B ) ) -> ( ( lt ` O ) Or B <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) ) |
78 |
76 77
|
syl |
|- ( ph -> ( ( lt ` O ) Or B <-> ( { <. x , y >. | ps } i^i ( B X. B ) ) Or B ) ) |
79 |
30 78
|
mpbird |
|- ( ph -> ( lt ` O ) Or B ) |
80 |
6 1 4
|
opsrbas |
|- ( ph -> ( Base ` S ) = ( Base ` O ) ) |
81 |
7 80
|
eqtrid |
|- ( ph -> B = ( Base ` O ) ) |
82 |
|
soeq2 |
|- ( B = ( Base ` O ) -> ( ( lt ` O ) Or B <-> ( lt ` O ) Or ( Base ` O ) ) ) |
83 |
81 82
|
syl |
|- ( ph -> ( ( lt ` O ) Or B <-> ( lt ` O ) Or ( Base ` O ) ) ) |
84 |
79 83
|
mpbid |
|- ( ph -> ( lt ` O ) Or ( Base ` O ) ) |
85 |
81
|
reseq2d |
|- ( ph -> ( _I |` B ) = ( _I |` ( Base ` O ) ) ) |
86 |
|
ssun2 |
|- ( _I |` B ) C_ ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) |
87 |
85 86
|
eqsstrrdi |
|- ( ph -> ( _I |` ( Base ` O ) ) C_ ( ( { <. x , y >. | ps } i^i ( B X. B ) ) u. ( _I |` B ) ) ) |
88 |
87 42
|
sseqtrrd |
|- ( ph -> ( _I |` ( Base ` O ) ) C_ .<_ ) |
89 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
90 |
89 12 32
|
tosso |
|- ( O e. _V -> ( O e. Toset <-> ( ( lt ` O ) Or ( Base ` O ) /\ ( _I |` ( Base ` O ) ) C_ .<_ ) ) ) |
91 |
31 90
|
ax-mp |
|- ( O e. Toset <-> ( ( lt ` O ) Or ( Base ` O ) /\ ( _I |` ( Base ` O ) ) C_ .<_ ) ) |
92 |
84 88 91
|
sylanbrc |
|- ( ph -> O e. Toset ) |