Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opth2.1 | |- C e. _V |
|
| opth2.2 | |- D e. _V |
||
| Assertion | opth2 | |- ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth2.1 | |- C e. _V |
|
| 2 | opth2.2 | |- D e. _V |
|
| 3 | opthg2 | |- ( ( C e. _V /\ D e. _V ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) |