Metamath Proof Explorer


Theorem opth2

Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014)

Ref Expression
Hypotheses opth2.1
|- C e. _V
opth2.2
|- D e. _V
Assertion opth2
|- ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) )

Proof

Step Hyp Ref Expression
1 opth2.1
 |-  C e. _V
2 opth2.2
 |-  D e. _V
3 opthg2
 |-  ( ( C e. _V /\ D e. _V ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) )
4 1 2 3 mp2an
 |-  ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) )