Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opth2.1 | |- C e. _V |
|
opth2.2 | |- D e. _V |
||
Assertion | opth2 | |- ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth2.1 | |- C e. _V |
|
2 | opth2.2 | |- D e. _V |
|
3 | opthg2 | |- ( ( C e. _V /\ D e. _V ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) |