Step |
Hyp |
Ref |
Expression |
1 |
|
opeq1 |
|- ( x = A -> <. x , y >. = <. A , y >. ) |
2 |
1
|
eqeq1d |
|- ( x = A -> ( <. x , y >. = <. C , D >. <-> <. A , y >. = <. C , D >. ) ) |
3 |
|
eqeq1 |
|- ( x = A -> ( x = C <-> A = C ) ) |
4 |
3
|
anbi1d |
|- ( x = A -> ( ( x = C /\ y = D ) <-> ( A = C /\ y = D ) ) ) |
5 |
2 4
|
bibi12d |
|- ( x = A -> ( ( <. x , y >. = <. C , D >. <-> ( x = C /\ y = D ) ) <-> ( <. A , y >. = <. C , D >. <-> ( A = C /\ y = D ) ) ) ) |
6 |
|
opeq2 |
|- ( y = B -> <. A , y >. = <. A , B >. ) |
7 |
6
|
eqeq1d |
|- ( y = B -> ( <. A , y >. = <. C , D >. <-> <. A , B >. = <. C , D >. ) ) |
8 |
|
eqeq1 |
|- ( y = B -> ( y = D <-> B = D ) ) |
9 |
8
|
anbi2d |
|- ( y = B -> ( ( A = C /\ y = D ) <-> ( A = C /\ B = D ) ) ) |
10 |
7 9
|
bibi12d |
|- ( y = B -> ( ( <. A , y >. = <. C , D >. <-> ( A = C /\ y = D ) ) <-> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) ) |
11 |
|
vex |
|- x e. _V |
12 |
|
vex |
|- y e. _V |
13 |
11 12
|
opth |
|- ( <. x , y >. = <. C , D >. <-> ( x = C /\ y = D ) ) |
14 |
5 10 13
|
vtocl2g |
|- ( ( A e. V /\ B e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |