Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | opthg2 | |- ( ( C e. V /\ D e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthg | |- ( ( C e. V /\ D e. W ) -> ( <. C , D >. = <. A , B >. <-> ( C = A /\ D = B ) ) ) |
|
2 | eqcom | |- ( <. A , B >. = <. C , D >. <-> <. C , D >. = <. A , B >. ) |
|
3 | eqcom | |- ( A = C <-> C = A ) |
|
4 | eqcom | |- ( B = D <-> D = B ) |
|
5 | 3 4 | anbi12i | |- ( ( A = C /\ B = D ) <-> ( C = A /\ D = B ) ) |
6 | 1 2 5 | 3bitr4g | |- ( ( C e. V /\ D e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) ) |