Metamath Proof Explorer


Theorem opthg2

Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opthg2
|- ( ( C e. V /\ D e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) )

Proof

Step Hyp Ref Expression
1 opthg
 |-  ( ( C e. V /\ D e. W ) -> ( <. C , D >. = <. A , B >. <-> ( C = A /\ D = B ) ) )
2 eqcom
 |-  ( <. A , B >. = <. C , D >. <-> <. C , D >. = <. A , B >. )
3 eqcom
 |-  ( A = C <-> C = A )
4 eqcom
 |-  ( B = D <-> D = B )
5 3 4 anbi12i
 |-  ( ( A = C /\ B = D ) <-> ( C = A /\ D = B ) )
6 1 2 5 3bitr4g
 |-  ( ( C e. V /\ D e. W ) -> ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) )