Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opthne.1 | |- A e. _V |
|
opthne.2 | |- B e. _V |
||
Assertion | opthne | |- ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthne.1 | |- A e. _V |
|
2 | opthne.2 | |- B e. _V |
|
3 | opthneg | |- ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) |