Metamath Proof Explorer


Theorem opthne

Description: Two ordered pairs are not equal iff their first components or their second components are not equal. (Contributed by AV, 13-Dec-2018)

Ref Expression
Hypotheses opthne.1
|- A e. _V
opthne.2
|- B e. _V
Assertion opthne
|- ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) )

Proof

Step Hyp Ref Expression
1 opthne.1
 |-  A e. _V
2 opthne.2
 |-  B e. _V
3 opthneg
 |-  ( ( A e. _V /\ B e. _V ) -> ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) ) )
4 1 2 3 mp2an
 |-  ( <. A , B >. =/= <. C , D >. <-> ( A =/= C \/ B =/= D ) )