| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preqr1.a |  |-  A e. _V | 
						
							| 2 |  | preqr1.b |  |-  B e. _V | 
						
							| 3 |  | preq12b.c |  |-  C e. _V | 
						
							| 4 |  | preq12b.d |  |-  D e. _V | 
						
							| 5 | 1 2 3 4 | preq12b |  |-  ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) | 
						
							| 6 |  | idd |  |-  ( A =/= D -> ( ( A = C /\ B = D ) -> ( A = C /\ B = D ) ) ) | 
						
							| 7 |  | df-ne |  |-  ( A =/= D <-> -. A = D ) | 
						
							| 8 |  | pm2.21 |  |-  ( -. A = D -> ( A = D -> ( B = C -> ( A = C /\ B = D ) ) ) ) | 
						
							| 9 | 7 8 | sylbi |  |-  ( A =/= D -> ( A = D -> ( B = C -> ( A = C /\ B = D ) ) ) ) | 
						
							| 10 | 9 | impd |  |-  ( A =/= D -> ( ( A = D /\ B = C ) -> ( A = C /\ B = D ) ) ) | 
						
							| 11 | 6 10 | jaod |  |-  ( A =/= D -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( A = C /\ B = D ) ) ) | 
						
							| 12 |  | orc |  |-  ( ( A = C /\ B = D ) -> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) | 
						
							| 13 | 11 12 | impbid1 |  |-  ( A =/= D -> ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( A = C /\ B = D ) ) ) | 
						
							| 14 | 5 13 | bitrid |  |-  ( A =/= D -> ( { A , B } = { C , D } <-> ( A = C /\ B = D ) ) ) |