Metamath Proof Explorer


Theorem optocl

Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995)

Ref Expression
Hypotheses optocl.1
|- D = ( B X. C )
optocl.2
|- ( <. x , y >. = A -> ( ph <-> ps ) )
optocl.3
|- ( ( x e. B /\ y e. C ) -> ph )
Assertion optocl
|- ( A e. D -> ps )

Proof

Step Hyp Ref Expression
1 optocl.1
 |-  D = ( B X. C )
2 optocl.2
 |-  ( <. x , y >. = A -> ( ph <-> ps ) )
3 optocl.3
 |-  ( ( x e. B /\ y e. C ) -> ph )
4 elxp3
 |-  ( A e. ( B X. C ) <-> E. x E. y ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) )
5 opelxp
 |-  ( <. x , y >. e. ( B X. C ) <-> ( x e. B /\ y e. C ) )
6 5 3 sylbi
 |-  ( <. x , y >. e. ( B X. C ) -> ph )
7 6 2 syl5ib
 |-  ( <. x , y >. = A -> ( <. x , y >. e. ( B X. C ) -> ps ) )
8 7 imp
 |-  ( ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) -> ps )
9 8 exlimivv
 |-  ( E. x E. y ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) -> ps )
10 4 9 sylbi
 |-  ( A e. ( B X. C ) -> ps )
11 10 1 eleq2s
 |-  ( A e. D -> ps )