Step |
Hyp |
Ref |
Expression |
1 |
|
df-3an |
|- ( ( ps /\ ch /\ ta ) <-> ( ( ps /\ ch ) /\ ta ) ) |
2 |
1
|
orbi2i |
|- ( ( ph \/ ( ps /\ ch /\ ta ) ) <-> ( ph \/ ( ( ps /\ ch ) /\ ta ) ) ) |
3 |
|
ordi |
|- ( ( ph \/ ( ( ps /\ ch ) /\ ta ) ) <-> ( ( ph \/ ( ps /\ ch ) ) /\ ( ph \/ ta ) ) ) |
4 |
|
ordi |
|- ( ( ph \/ ( ps /\ ch ) ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) ) ) |
5 |
4
|
anbi1i |
|- ( ( ( ph \/ ( ps /\ ch ) ) /\ ( ph \/ ta ) ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ph \/ ta ) ) ) |
6 |
2 3 5
|
3bitri |
|- ( ( ph \/ ( ps /\ ch /\ ta ) ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ph \/ ta ) ) ) |
7 |
|
df-3an |
|- ( ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ph \/ ta ) ) <-> ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) /\ ( ph \/ ta ) ) ) |
8 |
6 7
|
bitr4i |
|- ( ( ph \/ ( ps /\ ch /\ ta ) ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) /\ ( ph \/ ta ) ) ) |