Step |
Hyp |
Ref |
Expression |
1 |
|
or3di |
|- ( ( ta \/ ( ph /\ ps /\ ch ) ) <-> ( ( ta \/ ph ) /\ ( ta \/ ps ) /\ ( ta \/ ch ) ) ) |
2 |
|
orcom |
|- ( ( ta \/ ( ph /\ ps /\ ch ) ) <-> ( ( ph /\ ps /\ ch ) \/ ta ) ) |
3 |
|
orcom |
|- ( ( ta \/ ph ) <-> ( ph \/ ta ) ) |
4 |
|
orcom |
|- ( ( ta \/ ps ) <-> ( ps \/ ta ) ) |
5 |
|
orcom |
|- ( ( ta \/ ch ) <-> ( ch \/ ta ) ) |
6 |
3 4 5
|
3anbi123i |
|- ( ( ( ta \/ ph ) /\ ( ta \/ ps ) /\ ( ta \/ ch ) ) <-> ( ( ph \/ ta ) /\ ( ps \/ ta ) /\ ( ch \/ ta ) ) ) |
7 |
1 2 6
|
3bitr3i |
|- ( ( ( ph /\ ps /\ ch ) \/ ta ) <-> ( ( ph \/ ta ) /\ ( ps \/ ta ) /\ ( ch \/ ta ) ) ) |