Description: Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005) (Proof shortened by Wolf Lammen, 10-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | oranabs | |- ( ( ( ph \/ -. ps ) /\ ps ) <-> ( ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biortn | |- ( ps -> ( ph <-> ( -. ps \/ ph ) ) ) |
|
2 | orcom | |- ( ( -. ps \/ ph ) <-> ( ph \/ -. ps ) ) |
|
3 | 1 2 | bitr2di | |- ( ps -> ( ( ph \/ -. ps ) <-> ph ) ) |
4 | 3 | pm5.32ri | |- ( ( ( ph \/ -. ps ) /\ ps ) <-> ( ph /\ ps ) ) |