Metamath Proof Explorer


Theorem orass

Description: Associative law for disjunction. Theorem *4.33 of WhiteheadRussell p. 118. (Contributed by NM, 5-Aug-1993) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion orass
|- ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 orcom
 |-  ( ( ( ph \/ ps ) \/ ch ) <-> ( ch \/ ( ph \/ ps ) ) )
2 or12
 |-  ( ( ch \/ ( ph \/ ps ) ) <-> ( ph \/ ( ch \/ ps ) ) )
3 orcom
 |-  ( ( ch \/ ps ) <-> ( ps \/ ch ) )
4 3 orbi2i
 |-  ( ( ph \/ ( ch \/ ps ) ) <-> ( ph \/ ( ps \/ ch ) ) )
5 1 2 4 3bitri
 |-  ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ( ps \/ ch ) ) )