Description: Deduction joining two equivalences to form equivalence of disjunctions. (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| bi12d.2 | |- ( ph -> ( th <-> ta ) ) |
||
| Assertion | orbi12d | |- ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi12d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | bi12d.2 | |- ( ph -> ( th <-> ta ) ) |
|
| 3 | 1 | orbi1d | |- ( ph -> ( ( ps \/ th ) <-> ( ch \/ th ) ) ) |
| 4 | 2 | orbi2d | |- ( ph -> ( ( ch \/ th ) <-> ( ch \/ ta ) ) ) |
| 5 | 3 4 | bitrd | |- ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) ) |