Metamath Proof Explorer


Theorem orbi12i

Description: Infer the disjunction of two equivalences. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses orbi12i.1
|- ( ph <-> ps )
orbi12i.2
|- ( ch <-> th )
Assertion orbi12i
|- ( ( ph \/ ch ) <-> ( ps \/ th ) )

Proof

Step Hyp Ref Expression
1 orbi12i.1
 |-  ( ph <-> ps )
2 orbi12i.2
 |-  ( ch <-> th )
3 2 orbi2i
 |-  ( ( ph \/ ch ) <-> ( ph \/ th ) )
4 1 orbi1i
 |-  ( ( ph \/ th ) <-> ( ps \/ th ) )
5 3 4 bitri
 |-  ( ( ph \/ ch ) <-> ( ps \/ th ) )