| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 |  |-  (. ( ph <-> ps ) ->. ( ph <-> ps ) ). | 
						
							| 2 |  | idn2 |  |-  (. ( ph <-> ps ) ,. ( ch \/ ph ) ->. ( ch \/ ph ) ). | 
						
							| 3 |  | pm1.4 |  |-  ( ( ch \/ ph ) -> ( ph \/ ch ) ) | 
						
							| 4 | 2 3 | e2 |  |-  (. ( ph <-> ps ) ,. ( ch \/ ph ) ->. ( ph \/ ch ) ). | 
						
							| 5 |  | orbi1 |  |-  ( ( ph <-> ps ) -> ( ( ph \/ ch ) <-> ( ps \/ ch ) ) ) | 
						
							| 6 | 5 | biimpd |  |-  ( ( ph <-> ps ) -> ( ( ph \/ ch ) -> ( ps \/ ch ) ) ) | 
						
							| 7 | 1 4 6 | e12 |  |-  (. ( ph <-> ps ) ,. ( ch \/ ph ) ->. ( ps \/ ch ) ). | 
						
							| 8 |  | pm1.4 |  |-  ( ( ps \/ ch ) -> ( ch \/ ps ) ) | 
						
							| 9 | 7 8 | e2 |  |-  (. ( ph <-> ps ) ,. ( ch \/ ph ) ->. ( ch \/ ps ) ). | 
						
							| 10 | 9 | in2 |  |-  (. ( ph <-> ps ) ->. ( ( ch \/ ph ) -> ( ch \/ ps ) ) ). | 
						
							| 11 |  | idn2 |  |-  (. ( ph <-> ps ) ,. ( ch \/ ps ) ->. ( ch \/ ps ) ). | 
						
							| 12 |  | pm1.4 |  |-  ( ( ch \/ ps ) -> ( ps \/ ch ) ) | 
						
							| 13 | 11 12 | e2 |  |-  (. ( ph <-> ps ) ,. ( ch \/ ps ) ->. ( ps \/ ch ) ). | 
						
							| 14 | 5 | biimprd |  |-  ( ( ph <-> ps ) -> ( ( ps \/ ch ) -> ( ph \/ ch ) ) ) | 
						
							| 15 | 1 13 14 | e12 |  |-  (. ( ph <-> ps ) ,. ( ch \/ ps ) ->. ( ph \/ ch ) ). | 
						
							| 16 |  | pm1.4 |  |-  ( ( ph \/ ch ) -> ( ch \/ ph ) ) | 
						
							| 17 | 15 16 | e2 |  |-  (. ( ph <-> ps ) ,. ( ch \/ ps ) ->. ( ch \/ ph ) ). | 
						
							| 18 | 17 | in2 |  |-  (. ( ph <-> ps ) ->. ( ( ch \/ ps ) -> ( ch \/ ph ) ) ). | 
						
							| 19 |  | impbi |  |-  ( ( ( ch \/ ph ) -> ( ch \/ ps ) ) -> ( ( ( ch \/ ps ) -> ( ch \/ ph ) ) -> ( ( ch \/ ph ) <-> ( ch \/ ps ) ) ) ) | 
						
							| 20 | 10 18 19 | e11 |  |-  (. ( ph <-> ps ) ->. ( ( ch \/ ph ) <-> ( ch \/ ps ) ) ). | 
						
							| 21 | 20 | in1 |  |-  ( ( ph <-> ps ) -> ( ( ch \/ ph ) <-> ( ch \/ ps ) ) ) |