Metamath Proof Explorer


Theorem orbi2i

Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 12-Dec-2012)

Ref Expression
Hypothesis orbi2i.1
|- ( ph <-> ps )
Assertion orbi2i
|- ( ( ch \/ ph ) <-> ( ch \/ ps ) )

Proof

Step Hyp Ref Expression
1 orbi2i.1
 |-  ( ph <-> ps )
2 1 biimpi
 |-  ( ph -> ps )
3 2 orim2i
 |-  ( ( ch \/ ph ) -> ( ch \/ ps ) )
4 1 biimpri
 |-  ( ps -> ph )
5 4 orim2i
 |-  ( ( ch \/ ps ) -> ( ch \/ ph ) )
6 3 5 impbii
 |-  ( ( ch \/ ph ) <-> ( ch \/ ps ) )