Metamath Proof Explorer


Theorem orbidi

Description: Disjunction distributes over the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs" (1998), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.3384 . (Contributed by NM, 8-Jan-2005) (Proof shortened by Wolf Lammen, 4-Feb-2013)

Ref Expression
Assertion orbidi
|- ( ( ph \/ ( ps <-> ch ) ) <-> ( ( ph \/ ps ) <-> ( ph \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 pm5.74
 |-  ( ( -. ph -> ( ps <-> ch ) ) <-> ( ( -. ph -> ps ) <-> ( -. ph -> ch ) ) )
2 df-or
 |-  ( ( ph \/ ( ps <-> ch ) ) <-> ( -. ph -> ( ps <-> ch ) ) )
3 df-or
 |-  ( ( ph \/ ps ) <-> ( -. ph -> ps ) )
4 df-or
 |-  ( ( ph \/ ch ) <-> ( -. ph -> ch ) )
5 3 4 bibi12i
 |-  ( ( ( ph \/ ps ) <-> ( ph \/ ch ) ) <-> ( ( -. ph -> ps ) <-> ( -. ph -> ch ) ) )
6 1 2 5 3bitr4i
 |-  ( ( ph \/ ( ps <-> ch ) ) <-> ( ( ph \/ ps ) <-> ( ph \/ ch ) ) )