| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gasta.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | gasta.2 |  |-  H = { u e. X | ( u .(+) A ) = A } | 
						
							| 3 |  | orbsta.r |  |-  .~ = ( G ~QG H ) | 
						
							| 4 |  | orbsta.f |  |-  F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) | 
						
							| 5 |  | ovexd |  |-  ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> ( k .(+) A ) e. _V ) | 
						
							| 6 | 1 2 | gastacl |  |-  ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> H e. ( SubGrp ` G ) ) | 
						
							| 7 | 1 3 | eqger |  |-  ( H e. ( SubGrp ` G ) -> .~ Er X ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> .~ Er X ) | 
						
							| 9 | 1 | fvexi |  |-  X e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> X e. _V ) | 
						
							| 11 |  | oveq1 |  |-  ( k = B -> ( k .(+) A ) = ( B .(+) A ) ) | 
						
							| 12 | 1 2 3 4 | orbstafun |  |-  ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> Fun F ) | 
						
							| 13 | 4 5 8 10 11 12 | qliftval |  |-  ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ B e. X ) -> ( F ` [ B ] .~ ) = ( B .(+) A ) ) |