Step |
Hyp |
Ref |
Expression |
1 |
|
gasta.1 |
|- X = ( Base ` G ) |
2 |
|
gasta.2 |
|- H = { u e. X | ( u .(+) A ) = A } |
3 |
|
orbsta.r |
|- .~ = ( G ~QG H ) |
4 |
|
orbsta.f |
|- F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) |
5 |
|
ovexd |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> ( k .(+) A ) e. _V ) |
6 |
1 2
|
gastacl |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> H e. ( SubGrp ` G ) ) |
7 |
1 3
|
eqger |
|- ( H e. ( SubGrp ` G ) -> .~ Er X ) |
8 |
6 7
|
syl |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> .~ Er X ) |
9 |
1
|
fvexi |
|- X e. _V |
10 |
9
|
a1i |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> X e. _V ) |
11 |
|
oveq1 |
|- ( k = B -> ( k .(+) A ) = ( B .(+) A ) ) |
12 |
1 2 3 4
|
orbstafun |
|- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> Fun F ) |
13 |
4 5 8 10 11 12
|
qliftval |
|- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ B e. X ) -> ( F ` [ B ] .~ ) = ( B .(+) A ) ) |