Metamath Proof Explorer


Theorem orcnd

Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypotheses orcnd.1
|- ( ph -> ( ps \/ ch ) )
orcnd.2
|- ( ph -> -. ps )
Assertion orcnd
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 orcnd.1
 |-  ( ph -> ( ps \/ ch ) )
2 orcnd.2
 |-  ( ph -> -. ps )
3 1 orcomd
 |-  ( ph -> ( ch \/ ps ) )
4 3 2 olcnd
 |-  ( ph -> ch )