Step |
Hyp |
Ref |
Expression |
1 |
|
ne0i |
|- ( (/) e. A -> A =/= (/) ) |
2 |
|
ord0 |
|- Ord (/) |
3 |
|
noel |
|- -. A e. (/) |
4 |
|
ordtri2 |
|- ( ( Ord A /\ Ord (/) ) -> ( A e. (/) <-> -. ( A = (/) \/ (/) e. A ) ) ) |
5 |
4
|
con2bid |
|- ( ( Ord A /\ Ord (/) ) -> ( ( A = (/) \/ (/) e. A ) <-> -. A e. (/) ) ) |
6 |
3 5
|
mpbiri |
|- ( ( Ord A /\ Ord (/) ) -> ( A = (/) \/ (/) e. A ) ) |
7 |
2 6
|
mpan2 |
|- ( Ord A -> ( A = (/) \/ (/) e. A ) ) |
8 |
|
neor |
|- ( ( A = (/) \/ (/) e. A ) <-> ( A =/= (/) -> (/) e. A ) ) |
9 |
7 8
|
sylib |
|- ( Ord A -> ( A =/= (/) -> (/) e. A ) ) |
10 |
1 9
|
impbid2 |
|- ( Ord A -> ( (/) e. A <-> A =/= (/) ) ) |