| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ne0i |
|- ( (/) e. A -> A =/= (/) ) |
| 2 |
|
ord0 |
|- Ord (/) |
| 3 |
|
noel |
|- -. A e. (/) |
| 4 |
|
ordtri2 |
|- ( ( Ord A /\ Ord (/) ) -> ( A e. (/) <-> -. ( A = (/) \/ (/) e. A ) ) ) |
| 5 |
4
|
con2bid |
|- ( ( Ord A /\ Ord (/) ) -> ( ( A = (/) \/ (/) e. A ) <-> -. A e. (/) ) ) |
| 6 |
3 5
|
mpbiri |
|- ( ( Ord A /\ Ord (/) ) -> ( A = (/) \/ (/) e. A ) ) |
| 7 |
2 6
|
mpan2 |
|- ( Ord A -> ( A = (/) \/ (/) e. A ) ) |
| 8 |
|
neor |
|- ( ( A = (/) \/ (/) e. A ) <-> ( A =/= (/) -> (/) e. A ) ) |
| 9 |
7 8
|
sylib |
|- ( Ord A -> ( A =/= (/) -> (/) e. A ) ) |
| 10 |
1 9
|
impbid2 |
|- ( Ord A -> ( (/) e. A <-> A =/= (/) ) ) |