Step |
Hyp |
Ref |
Expression |
1 |
|
ne0i |
|- ( 2o e. A -> A =/= (/) ) |
2 |
|
2on0 |
|- 2o =/= (/) |
3 |
|
el1o |
|- ( 2o e. 1o <-> 2o = (/) ) |
4 |
2 3
|
nemtbir |
|- -. 2o e. 1o |
5 |
|
eleq2 |
|- ( A = 1o -> ( 2o e. A <-> 2o e. 1o ) ) |
6 |
4 5
|
mtbiri |
|- ( A = 1o -> -. 2o e. A ) |
7 |
6
|
necon2ai |
|- ( 2o e. A -> A =/= 1o ) |
8 |
|
2on |
|- 2o e. On |
9 |
8
|
onirri |
|- -. 2o e. 2o |
10 |
|
eleq2 |
|- ( A = 2o -> ( 2o e. A <-> 2o e. 2o ) ) |
11 |
9 10
|
mtbiri |
|- ( A = 2o -> -. 2o e. A ) |
12 |
11
|
necon2ai |
|- ( 2o e. A -> A =/= 2o ) |
13 |
1 7 12
|
3jca |
|- ( 2o e. A -> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) |
14 |
|
nesym |
|- ( A =/= 2o <-> -. 2o = A ) |
15 |
14
|
biimpi |
|- ( A =/= 2o -> -. 2o = A ) |
16 |
15
|
3ad2ant3 |
|- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. 2o = A ) |
17 |
|
simp1 |
|- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> A =/= (/) ) |
18 |
|
simp2 |
|- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> A =/= 1o ) |
19 |
17 18
|
nelprd |
|- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. A e. { (/) , 1o } ) |
20 |
|
df2o3 |
|- 2o = { (/) , 1o } |
21 |
20
|
eleq2i |
|- ( A e. 2o <-> A e. { (/) , 1o } ) |
22 |
19 21
|
sylnibr |
|- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. A e. 2o ) |
23 |
16 22
|
jca |
|- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> ( -. 2o = A /\ -. A e. 2o ) ) |
24 |
|
pm4.56 |
|- ( ( -. 2o = A /\ -. A e. 2o ) <-> -. ( 2o = A \/ A e. 2o ) ) |
25 |
23 24
|
sylib |
|- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. ( 2o = A \/ A e. 2o ) ) |
26 |
8
|
onordi |
|- Ord 2o |
27 |
|
ordtri2 |
|- ( ( Ord 2o /\ Ord A ) -> ( 2o e. A <-> -. ( 2o = A \/ A e. 2o ) ) ) |
28 |
26 27
|
mpan |
|- ( Ord A -> ( 2o e. A <-> -. ( 2o = A \/ A e. 2o ) ) ) |
29 |
25 28
|
imbitrrid |
|- ( Ord A -> ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> 2o e. A ) ) |
30 |
13 29
|
impbid2 |
|- ( Ord A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) |