Metamath Proof Explorer


Theorem ord2eln012

Description: An ordinal that is not 0, 1, or 2 contains 2. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion ord2eln012
|- ( Ord A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) )

Proof

Step Hyp Ref Expression
1 ne0i
 |-  ( 2o e. A -> A =/= (/) )
2 2on0
 |-  2o =/= (/)
3 el1o
 |-  ( 2o e. 1o <-> 2o = (/) )
4 2 3 nemtbir
 |-  -. 2o e. 1o
5 eleq2
 |-  ( A = 1o -> ( 2o e. A <-> 2o e. 1o ) )
6 4 5 mtbiri
 |-  ( A = 1o -> -. 2o e. A )
7 6 necon2ai
 |-  ( 2o e. A -> A =/= 1o )
8 2on
 |-  2o e. On
9 8 onirri
 |-  -. 2o e. 2o
10 eleq2
 |-  ( A = 2o -> ( 2o e. A <-> 2o e. 2o ) )
11 9 10 mtbiri
 |-  ( A = 2o -> -. 2o e. A )
12 11 necon2ai
 |-  ( 2o e. A -> A =/= 2o )
13 1 7 12 3jca
 |-  ( 2o e. A -> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) )
14 nesym
 |-  ( A =/= 2o <-> -. 2o = A )
15 14 biimpi
 |-  ( A =/= 2o -> -. 2o = A )
16 15 3ad2ant3
 |-  ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. 2o = A )
17 simp1
 |-  ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> A =/= (/) )
18 simp2
 |-  ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> A =/= 1o )
19 17 18 nelprd
 |-  ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. A e. { (/) , 1o } )
20 df2o3
 |-  2o = { (/) , 1o }
21 20 eleq2i
 |-  ( A e. 2o <-> A e. { (/) , 1o } )
22 19 21 sylnibr
 |-  ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. A e. 2o )
23 16 22 jca
 |-  ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> ( -. 2o = A /\ -. A e. 2o ) )
24 pm4.56
 |-  ( ( -. 2o = A /\ -. A e. 2o ) <-> -. ( 2o = A \/ A e. 2o ) )
25 23 24 sylib
 |-  ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. ( 2o = A \/ A e. 2o ) )
26 8 onordi
 |-  Ord 2o
27 ordtri2
 |-  ( ( Ord 2o /\ Ord A ) -> ( 2o e. A <-> -. ( 2o = A \/ A e. 2o ) ) )
28 26 27 mpan
 |-  ( Ord A -> ( 2o e. A <-> -. ( 2o = A \/ A e. 2o ) ) )
29 25 28 imbitrrid
 |-  ( Ord A -> ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> 2o e. A ) )
30 13 29 impbid2
 |-  ( Ord A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) )