Metamath Proof Explorer


Theorem ord3

Description: Ordinal 3 is an ordinal class. (Contributed by BTernaryTau, 6-Jan-2025)

Ref Expression
Assertion ord3
|- Ord 3o

Proof

Step Hyp Ref Expression
1 2on
 |-  2o e. On
2 eloni
 |-  ( 2o e. On -> Ord 2o )
3 ordsuci
 |-  ( Ord 2o -> Ord suc 2o )
4 1 2 3 mp2b
 |-  Ord suc 2o
5 df-3o
 |-  3o = suc 2o
6 ordeq
 |-  ( 3o = suc 2o -> ( Ord 3o <-> Ord suc 2o ) )
7 5 6 ax-mp
 |-  ( Ord 3o <-> Ord suc 2o )
8 4 7 mpbir
 |-  Ord 3o