Step |
Hyp |
Ref |
Expression |
1 |
|
ordir |
|- ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ph \/ ( ch /\ th ) ) /\ ( ps \/ ( ch /\ th ) ) ) ) |
2 |
|
ordi |
|- ( ( ph \/ ( ch /\ th ) ) <-> ( ( ph \/ ch ) /\ ( ph \/ th ) ) ) |
3 |
|
ordi |
|- ( ( ps \/ ( ch /\ th ) ) <-> ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) |
4 |
2 3
|
anbi12i |
|- ( ( ( ph \/ ( ch /\ th ) ) /\ ( ps \/ ( ch /\ th ) ) ) <-> ( ( ( ph \/ ch ) /\ ( ph \/ th ) ) /\ ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) ) |
5 |
1 4
|
bitri |
|- ( ( ( ph /\ ps ) \/ ( ch /\ th ) ) <-> ( ( ( ph \/ ch ) /\ ( ph \/ th ) ) /\ ( ( ps \/ ch ) /\ ( ps \/ th ) ) ) ) |