| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orddisj |
|- ( Ord A -> ( A i^i { A } ) = (/) ) |
| 2 |
|
disj3 |
|- ( ( A i^i { A } ) = (/) <-> A = ( A \ { A } ) ) |
| 3 |
|
df-suc |
|- suc A = ( A u. { A } ) |
| 4 |
3
|
difeq1i |
|- ( suc A \ { A } ) = ( ( A u. { A } ) \ { A } ) |
| 5 |
|
difun2 |
|- ( ( A u. { A } ) \ { A } ) = ( A \ { A } ) |
| 6 |
4 5
|
eqtri |
|- ( suc A \ { A } ) = ( A \ { A } ) |
| 7 |
6
|
eqeq2i |
|- ( A = ( suc A \ { A } ) <-> A = ( A \ { A } ) ) |
| 8 |
2 7
|
bitr4i |
|- ( ( A i^i { A } ) = (/) <-> A = ( suc A \ { A } ) ) |
| 9 |
1 8
|
sylib |
|- ( Ord A -> A = ( suc A \ { A } ) ) |