Metamath Proof Explorer


Theorem ordeleqon

Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of TakeutiZaring p. 38 and its converse. (Contributed by NM, 1-Jun-2003)

Ref Expression
Assertion ordeleqon
|- ( Ord A <-> ( A e. On \/ A = On ) )

Proof

Step Hyp Ref Expression
1 onprc
 |-  -. On e. _V
2 elex
 |-  ( On e. A -> On e. _V )
3 1 2 mto
 |-  -. On e. A
4 ordon
 |-  Ord On
5 ordtri3or
 |-  ( ( Ord A /\ Ord On ) -> ( A e. On \/ A = On \/ On e. A ) )
6 4 5 mpan2
 |-  ( Ord A -> ( A e. On \/ A = On \/ On e. A ) )
7 df-3or
 |-  ( ( A e. On \/ A = On \/ On e. A ) <-> ( ( A e. On \/ A = On ) \/ On e. A ) )
8 6 7 sylib
 |-  ( Ord A -> ( ( A e. On \/ A = On ) \/ On e. A ) )
9 8 ord
 |-  ( Ord A -> ( -. ( A e. On \/ A = On ) -> On e. A ) )
10 3 9 mt3i
 |-  ( Ord A -> ( A e. On \/ A = On ) )
11 eloni
 |-  ( A e. On -> Ord A )
12 ordeq
 |-  ( A = On -> ( Ord A <-> Ord On ) )
13 4 12 mpbiri
 |-  ( A = On -> Ord A )
14 11 13 jaoi
 |-  ( ( A e. On \/ A = On ) -> Ord A )
15 10 14 impbii
 |-  ( Ord A <-> ( A e. On \/ A = On ) )