| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onprc |
|- -. On e. _V |
| 2 |
|
elex |
|- ( On e. A -> On e. _V ) |
| 3 |
1 2
|
mto |
|- -. On e. A |
| 4 |
|
ordon |
|- Ord On |
| 5 |
|
ordtri3or |
|- ( ( Ord A /\ Ord On ) -> ( A e. On \/ A = On \/ On e. A ) ) |
| 6 |
4 5
|
mpan2 |
|- ( Ord A -> ( A e. On \/ A = On \/ On e. A ) ) |
| 7 |
|
df-3or |
|- ( ( A e. On \/ A = On \/ On e. A ) <-> ( ( A e. On \/ A = On ) \/ On e. A ) ) |
| 8 |
6 7
|
sylib |
|- ( Ord A -> ( ( A e. On \/ A = On ) \/ On e. A ) ) |
| 9 |
8
|
ord |
|- ( Ord A -> ( -. ( A e. On \/ A = On ) -> On e. A ) ) |
| 10 |
3 9
|
mt3i |
|- ( Ord A -> ( A e. On \/ A = On ) ) |
| 11 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 12 |
|
ordeq |
|- ( A = On -> ( Ord A <-> Ord On ) ) |
| 13 |
4 12
|
mpbiri |
|- ( A = On -> Ord A ) |
| 14 |
11 13
|
jaoi |
|- ( ( A e. On \/ A = On ) -> Ord A ) |
| 15 |
10 14
|
impbii |
|- ( Ord A <-> ( A e. On \/ A = On ) ) |