| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtri2or3 |
|- ( ( Ord A /\ Ord B ) -> ( A = ( A i^i B ) \/ B = ( A i^i B ) ) ) |
| 2 |
1
|
3adant3 |
|- ( ( Ord A /\ Ord B /\ Ord C ) -> ( A = ( A i^i B ) \/ B = ( A i^i B ) ) ) |
| 3 |
|
eleq1a |
|- ( ( A i^i B ) e. C -> ( A = ( A i^i B ) -> A e. C ) ) |
| 4 |
|
eleq1a |
|- ( ( A i^i B ) e. C -> ( B = ( A i^i B ) -> B e. C ) ) |
| 5 |
3 4
|
orim12d |
|- ( ( A i^i B ) e. C -> ( ( A = ( A i^i B ) \/ B = ( A i^i B ) ) -> ( A e. C \/ B e. C ) ) ) |
| 6 |
2 5
|
syl5com |
|- ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A i^i B ) e. C -> ( A e. C \/ B e. C ) ) ) |
| 7 |
|
ordin |
|- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |
| 8 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 9 |
|
ordtr2 |
|- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( ( A i^i B ) C_ A /\ A e. C ) -> ( A i^i B ) e. C ) ) |
| 10 |
8 9
|
mpani |
|- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( A e. C -> ( A i^i B ) e. C ) ) |
| 11 |
|
inss2 |
|- ( A i^i B ) C_ B |
| 12 |
|
ordtr2 |
|- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( ( A i^i B ) C_ B /\ B e. C ) -> ( A i^i B ) e. C ) ) |
| 13 |
11 12
|
mpani |
|- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( B e. C -> ( A i^i B ) e. C ) ) |
| 14 |
10 13
|
jaod |
|- ( ( Ord ( A i^i B ) /\ Ord C ) -> ( ( A e. C \/ B e. C ) -> ( A i^i B ) e. C ) ) |
| 15 |
7 14
|
stoic3 |
|- ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A e. C \/ B e. C ) -> ( A i^i B ) e. C ) ) |
| 16 |
6 15
|
impbid |
|- ( ( Ord A /\ Ord B /\ Ord C ) -> ( ( A i^i B ) e. C <-> ( A e. C \/ B e. C ) ) ) |