Description: An element of an ordinal class is an ordinal number. Lemma 1.3 of Schloeder p. 1. (Contributed by NM, 26-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordelon | |- ( ( Ord A /\ B e. A ) -> B e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord | |- ( ( Ord A /\ B e. A ) -> Ord B ) |
|
| 2 | elong | |- ( B e. A -> ( B e. On <-> Ord B ) ) |
|
| 3 | 2 | adantl | |- ( ( Ord A /\ B e. A ) -> ( B e. On <-> Ord B ) ) |
| 4 | 1 3 | mpbird | |- ( ( Ord A /\ B e. A ) -> B e. On ) |