Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ordelss | |- ( ( Ord A /\ B e. A ) -> B C_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr | |- ( Ord A -> Tr A ) |
|
2 | trss | |- ( Tr A -> ( B e. A -> B C_ A ) ) |
|
3 | 2 | imp | |- ( ( Tr A /\ B e. A ) -> B C_ A ) |
4 | 1 3 | sylan | |- ( ( Ord A /\ B e. A ) -> B C_ A ) |