Metamath Proof Explorer


Theorem ordelssne

Description: For ordinal classes, membership is equivalent to strict inclusion. Corollary 7.8 of TakeutiZaring p. 37. (Contributed by NM, 25-Nov-1995)

Ref Expression
Assertion ordelssne
|- ( ( Ord A /\ Ord B ) -> ( A e. B <-> ( A C_ B /\ A =/= B ) ) )

Proof

Step Hyp Ref Expression
1 ordtr
 |-  ( Ord A -> Tr A )
2 tz7.7
 |-  ( ( Ord B /\ Tr A ) -> ( A e. B <-> ( A C_ B /\ A =/= B ) ) )
3 1 2 sylan2
 |-  ( ( Ord B /\ Ord A ) -> ( A e. B <-> ( A C_ B /\ A =/= B ) ) )
4 3 ancoms
 |-  ( ( Ord A /\ Ord B ) -> ( A e. B <-> ( A C_ B /\ A =/= B ) ) )