Metamath Proof Explorer


Theorem ordelsuc

Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 29-Nov-2003)

Ref Expression
Assertion ordelsuc
|- ( ( A e. C /\ Ord B ) -> ( A e. B <-> suc A C_ B ) )

Proof

Step Hyp Ref Expression
1 ordsucss
 |-  ( Ord B -> ( A e. B -> suc A C_ B ) )
2 1 adantl
 |-  ( ( A e. C /\ Ord B ) -> ( A e. B -> suc A C_ B ) )
3 sucssel
 |-  ( A e. C -> ( suc A C_ B -> A e. B ) )
4 3 adantr
 |-  ( ( A e. C /\ Ord B ) -> ( suc A C_ B -> A e. B ) )
5 2 4 impbid
 |-  ( ( A e. C /\ Ord B ) -> ( A e. B <-> suc A C_ B ) )