Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of TakeutiZaring p. 42 and its converse. (Contributed by NM, 29-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | ordelsuc | |- ( ( A e. C /\ Ord B ) -> ( A e. B <-> suc A C_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucss | |- ( Ord B -> ( A e. B -> suc A C_ B ) ) |
|
2 | 1 | adantl | |- ( ( A e. C /\ Ord B ) -> ( A e. B -> suc A C_ B ) ) |
3 | sucssel | |- ( A e. C -> ( suc A C_ B -> A e. B ) ) |
|
4 | 3 | adantr | |- ( ( A e. C /\ Ord B ) -> ( suc A C_ B -> A e. B ) ) |
5 | 2 4 | impbid | |- ( ( A e. C /\ Ord B ) -> ( A e. B <-> suc A C_ B ) ) |