Description: Equality theorem for the ordinal predicate. (Contributed by NM, 17-Sep-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | ordeq | |- ( A = B -> ( Ord A <-> Ord B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq | |- ( A = B -> ( Tr A <-> Tr B ) ) |
|
2 | weeq2 | |- ( A = B -> ( _E We A <-> _E We B ) ) |
|
3 | 1 2 | anbi12d | |- ( A = B -> ( ( Tr A /\ _E We A ) <-> ( Tr B /\ _E We B ) ) ) |
4 | df-ord | |- ( Ord A <-> ( Tr A /\ _E We A ) ) |
|
5 | df-ord | |- ( Ord B <-> ( Tr B /\ _E We B ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( A = B -> ( Ord A <-> Ord B ) ) |