Description: Two ways to express that an ordinal class is positive. (Contributed by NM, 21-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | ordgt0ge1 | |- ( Ord A -> ( (/) e. A <-> 1o C_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon | |- (/) e. On |
|
2 | ordelsuc | |- ( ( (/) e. On /\ Ord A ) -> ( (/) e. A <-> suc (/) C_ A ) ) |
|
3 | 1 2 | mpan | |- ( Ord A -> ( (/) e. A <-> suc (/) C_ A ) ) |
4 | df-1o | |- 1o = suc (/) |
|
5 | 4 | sseq1i | |- ( 1o C_ A <-> suc (/) C_ A ) |
6 | 3 5 | bitr4di | |- ( Ord A -> ( (/) e. A <-> 1o C_ A ) ) |