Metamath Proof Explorer


Theorem ordi

Description: Distributive law for disjunction. Theorem *4.41 of WhiteheadRussell p. 119. (Contributed by NM, 5-Jan-1993) (Proof shortened by Andrew Salmon, 7-May-2011) (Proof shortened by Wolf Lammen, 28-Nov-2013)

Ref Expression
Assertion ordi
|- ( ( ph \/ ( ps /\ ch ) ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 jcab
 |-  ( ( -. ph -> ( ps /\ ch ) ) <-> ( ( -. ph -> ps ) /\ ( -. ph -> ch ) ) )
2 df-or
 |-  ( ( ph \/ ( ps /\ ch ) ) <-> ( -. ph -> ( ps /\ ch ) ) )
3 df-or
 |-  ( ( ph \/ ps ) <-> ( -. ph -> ps ) )
4 df-or
 |-  ( ( ph \/ ch ) <-> ( -. ph -> ch ) )
5 3 4 anbi12i
 |-  ( ( ( ph \/ ps ) /\ ( ph \/ ch ) ) <-> ( ( -. ph -> ps ) /\ ( -. ph -> ch ) ) )
6 1 2 5 3bitr4i
 |-  ( ( ph \/ ( ps /\ ch ) ) <-> ( ( ph \/ ps ) /\ ( ph \/ ch ) ) )