Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of TakeutiZaring p. 37. (Contributed by NM, 9-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ordin | |- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr | |- ( Ord A -> Tr A ) |
|
2 | ordtr | |- ( Ord B -> Tr B ) |
|
3 | trin | |- ( ( Tr A /\ Tr B ) -> Tr ( A i^i B ) ) |
|
4 | 1 2 3 | syl2an | |- ( ( Ord A /\ Ord B ) -> Tr ( A i^i B ) ) |
5 | inss2 | |- ( A i^i B ) C_ B |
|
6 | trssord | |- ( ( Tr ( A i^i B ) /\ ( A i^i B ) C_ B /\ Ord B ) -> Ord ( A i^i B ) ) |
|
7 | 5 6 | mp3an2 | |- ( ( Tr ( A i^i B ) /\ Ord B ) -> Ord ( A i^i B ) ) |
8 | 4 7 | sylancom | |- ( ( Ord A /\ Ord B ) -> Ord ( A i^i B ) ) |