| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssdif0 |  |-  ( A C_ B <-> ( A \ B ) = (/) ) | 
						
							| 2 | 1 | necon3bbii |  |-  ( -. A C_ B <-> ( A \ B ) =/= (/) ) | 
						
							| 3 |  | dfdif2 |  |-  ( A \ B ) = { x e. A | -. x e. B } | 
						
							| 4 | 3 | inteqi |  |-  |^| ( A \ B ) = |^| { x e. A | -. x e. B } | 
						
							| 5 |  | ordtri1 |  |-  ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) | 
						
							| 6 | 5 | con2bid |  |-  ( ( Ord A /\ Ord B ) -> ( B e. A <-> -. A C_ B ) ) | 
						
							| 7 |  | id |  |-  ( Ord B -> Ord B ) | 
						
							| 8 |  | ordelord |  |-  ( ( Ord A /\ x e. A ) -> Ord x ) | 
						
							| 9 |  | ordtri1 |  |-  ( ( Ord B /\ Ord x ) -> ( B C_ x <-> -. x e. B ) ) | 
						
							| 10 | 7 8 9 | syl2anr |  |-  ( ( ( Ord A /\ x e. A ) /\ Ord B ) -> ( B C_ x <-> -. x e. B ) ) | 
						
							| 11 | 10 | an32s |  |-  ( ( ( Ord A /\ Ord B ) /\ x e. A ) -> ( B C_ x <-> -. x e. B ) ) | 
						
							| 12 | 11 | rabbidva |  |-  ( ( Ord A /\ Ord B ) -> { x e. A | B C_ x } = { x e. A | -. x e. B } ) | 
						
							| 13 | 12 | inteqd |  |-  ( ( Ord A /\ Ord B ) -> |^| { x e. A | B C_ x } = |^| { x e. A | -. x e. B } ) | 
						
							| 14 |  | intmin |  |-  ( B e. A -> |^| { x e. A | B C_ x } = B ) | 
						
							| 15 | 13 14 | sylan9req |  |-  ( ( ( Ord A /\ Ord B ) /\ B e. A ) -> |^| { x e. A | -. x e. B } = B ) | 
						
							| 16 | 15 | ex |  |-  ( ( Ord A /\ Ord B ) -> ( B e. A -> |^| { x e. A | -. x e. B } = B ) ) | 
						
							| 17 | 6 16 | sylbird |  |-  ( ( Ord A /\ Ord B ) -> ( -. A C_ B -> |^| { x e. A | -. x e. B } = B ) ) | 
						
							| 18 | 17 | 3impia |  |-  ( ( Ord A /\ Ord B /\ -. A C_ B ) -> |^| { x e. A | -. x e. B } = B ) | 
						
							| 19 | 4 18 | eqtr2id |  |-  ( ( Ord A /\ Ord B /\ -. A C_ B ) -> B = |^| ( A \ B ) ) | 
						
							| 20 | 2 19 | syl3an3br |  |-  ( ( Ord A /\ Ord B /\ ( A \ B ) =/= (/) ) -> B = |^| ( A \ B ) ) |