Metamath Proof Explorer


Theorem ordir

Description: Distributive law for disjunction. (Contributed by NM, 12-Aug-1994)

Ref Expression
Assertion ordir
|- ( ( ( ph /\ ps ) \/ ch ) <-> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) )

Proof

Step Hyp Ref Expression
1 ordi
 |-  ( ( ch \/ ( ph /\ ps ) ) <-> ( ( ch \/ ph ) /\ ( ch \/ ps ) ) )
2 orcom
 |-  ( ( ( ph /\ ps ) \/ ch ) <-> ( ch \/ ( ph /\ ps ) ) )
3 orcom
 |-  ( ( ph \/ ch ) <-> ( ch \/ ph ) )
4 orcom
 |-  ( ( ps \/ ch ) <-> ( ch \/ ps ) )
5 3 4 anbi12i
 |-  ( ( ( ph \/ ch ) /\ ( ps \/ ch ) ) <-> ( ( ch \/ ph ) /\ ( ch \/ ps ) ) )
6 1 2 5 3bitr4i
 |-  ( ( ( ph /\ ps ) \/ ch ) <-> ( ( ph \/ ch ) /\ ( ps \/ ch ) ) )