Step |
Hyp |
Ref |
Expression |
1 |
|
ordsson |
|- ( Ord A -> A C_ On ) |
2 |
1
|
3ad2ant2 |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A C_ On ) |
3 |
2
|
sseld |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> x e. On ) ) |
4 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
5 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
6 |
|
id |
|- ( x = y -> x = y ) |
7 |
5 6
|
eqeq12d |
|- ( x = y -> ( ( F ` x ) = x <-> ( F ` y ) = y ) ) |
8 |
4 7
|
imbi12d |
|- ( x = y -> ( ( x e. A -> ( F ` x ) = x ) <-> ( y e. A -> ( F ` y ) = y ) ) ) |
9 |
8
|
imbi2d |
|- ( x = y -> ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) <-> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( y e. A -> ( F ` y ) = y ) ) ) ) |
10 |
|
r19.21v |
|- ( A. y e. x ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( y e. A -> ( F ` y ) = y ) ) <-> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A. y e. x ( y e. A -> ( F ` y ) = y ) ) ) |
11 |
|
ordelss |
|- ( ( Ord A /\ x e. A ) -> x C_ A ) |
12 |
11
|
3ad2antl2 |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) -> x C_ A ) |
13 |
12
|
sselda |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) /\ y e. x ) -> y e. A ) |
14 |
|
pm5.5 |
|- ( y e. A -> ( ( y e. A -> ( F ` y ) = y ) <-> ( F ` y ) = y ) ) |
15 |
13 14
|
syl |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) /\ y e. x ) -> ( ( y e. A -> ( F ` y ) = y ) <-> ( F ` y ) = y ) ) |
16 |
15
|
ralbidva |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) -> ( A. y e. x ( y e. A -> ( F ` y ) = y ) <-> A. y e. x ( F ` y ) = y ) ) |
17 |
|
isof1o |
|- ( F Isom _E , _E ( A , B ) -> F : A -1-1-onto-> B ) |
18 |
17
|
3ad2ant1 |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> F : A -1-1-onto-> B ) |
19 |
18
|
ad2antrr |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> F : A -1-1-onto-> B ) |
20 |
|
simpll3 |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> Ord B ) |
21 |
|
simpr |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> z e. ( F ` x ) ) |
22 |
|
f1of |
|- ( F : A -1-1-onto-> B -> F : A --> B ) |
23 |
17 22
|
syl |
|- ( F Isom _E , _E ( A , B ) -> F : A --> B ) |
24 |
23
|
3ad2ant1 |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> F : A --> B ) |
25 |
24
|
ad2antrr |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> F : A --> B ) |
26 |
|
simplrl |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> x e. A ) |
27 |
25 26
|
ffvelrnd |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( F ` x ) e. B ) |
28 |
21 27
|
jca |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( z e. ( F ` x ) /\ ( F ` x ) e. B ) ) |
29 |
|
ordtr1 |
|- ( Ord B -> ( ( z e. ( F ` x ) /\ ( F ` x ) e. B ) -> z e. B ) ) |
30 |
20 28 29
|
sylc |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> z e. B ) |
31 |
|
f1ocnvfv2 |
|- ( ( F : A -1-1-onto-> B /\ z e. B ) -> ( F ` ( `' F ` z ) ) = z ) |
32 |
19 30 31
|
syl2anc |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( F ` ( `' F ` z ) ) = z ) |
33 |
32 21
|
eqeltrd |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( F ` ( `' F ` z ) ) e. ( F ` x ) ) |
34 |
|
simpll1 |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> F Isom _E , _E ( A , B ) ) |
35 |
|
f1ocnv |
|- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
36 |
|
f1of |
|- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
37 |
19 35 36
|
3syl |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> `' F : B --> A ) |
38 |
37 30
|
ffvelrnd |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( `' F ` z ) e. A ) |
39 |
|
isorel |
|- ( ( F Isom _E , _E ( A , B ) /\ ( ( `' F ` z ) e. A /\ x e. A ) ) -> ( ( `' F ` z ) _E x <-> ( F ` ( `' F ` z ) ) _E ( F ` x ) ) ) |
40 |
34 38 26 39
|
syl12anc |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( ( `' F ` z ) _E x <-> ( F ` ( `' F ` z ) ) _E ( F ` x ) ) ) |
41 |
|
epel |
|- ( ( `' F ` z ) _E x <-> ( `' F ` z ) e. x ) |
42 |
|
fvex |
|- ( F ` x ) e. _V |
43 |
42
|
epeli |
|- ( ( F ` ( `' F ` z ) ) _E ( F ` x ) <-> ( F ` ( `' F ` z ) ) e. ( F ` x ) ) |
44 |
40 41 43
|
3bitr3g |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( ( `' F ` z ) e. x <-> ( F ` ( `' F ` z ) ) e. ( F ` x ) ) ) |
45 |
33 44
|
mpbird |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( `' F ` z ) e. x ) |
46 |
|
simplrr |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> A. y e. x ( F ` y ) = y ) |
47 |
|
fveq2 |
|- ( y = ( `' F ` z ) -> ( F ` y ) = ( F ` ( `' F ` z ) ) ) |
48 |
|
id |
|- ( y = ( `' F ` z ) -> y = ( `' F ` z ) ) |
49 |
47 48
|
eqeq12d |
|- ( y = ( `' F ` z ) -> ( ( F ` y ) = y <-> ( F ` ( `' F ` z ) ) = ( `' F ` z ) ) ) |
50 |
49
|
rspcv |
|- ( ( `' F ` z ) e. x -> ( A. y e. x ( F ` y ) = y -> ( F ` ( `' F ` z ) ) = ( `' F ` z ) ) ) |
51 |
45 46 50
|
sylc |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( F ` ( `' F ` z ) ) = ( `' F ` z ) ) |
52 |
32 51
|
eqtr3d |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> z = ( `' F ` z ) ) |
53 |
52 45
|
eqeltrd |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> z e. x ) |
54 |
|
simprr |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> A. y e. x ( F ` y ) = y ) |
55 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
56 |
|
id |
|- ( y = z -> y = z ) |
57 |
55 56
|
eqeq12d |
|- ( y = z -> ( ( F ` y ) = y <-> ( F ` z ) = z ) ) |
58 |
57
|
rspccva |
|- ( ( A. y e. x ( F ` y ) = y /\ z e. x ) -> ( F ` z ) = z ) |
59 |
54 58
|
sylan |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> ( F ` z ) = z ) |
60 |
|
epel |
|- ( z _E x <-> z e. x ) |
61 |
60
|
biimpri |
|- ( z e. x -> z _E x ) |
62 |
61
|
adantl |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> z _E x ) |
63 |
|
simpll1 |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> F Isom _E , _E ( A , B ) ) |
64 |
|
simpl2 |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> Ord A ) |
65 |
|
simprl |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> x e. A ) |
66 |
64 65 11
|
syl2anc |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> x C_ A ) |
67 |
66
|
sselda |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> z e. A ) |
68 |
|
simplrl |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> x e. A ) |
69 |
|
isorel |
|- ( ( F Isom _E , _E ( A , B ) /\ ( z e. A /\ x e. A ) ) -> ( z _E x <-> ( F ` z ) _E ( F ` x ) ) ) |
70 |
63 67 68 69
|
syl12anc |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> ( z _E x <-> ( F ` z ) _E ( F ` x ) ) ) |
71 |
62 70
|
mpbid |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> ( F ` z ) _E ( F ` x ) ) |
72 |
42
|
epeli |
|- ( ( F ` z ) _E ( F ` x ) <-> ( F ` z ) e. ( F ` x ) ) |
73 |
71 72
|
sylib |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> ( F ` z ) e. ( F ` x ) ) |
74 |
59 73
|
eqeltrrd |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> z e. ( F ` x ) ) |
75 |
53 74
|
impbida |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> ( z e. ( F ` x ) <-> z e. x ) ) |
76 |
75
|
eqrdv |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> ( F ` x ) = x ) |
77 |
76
|
expr |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) -> ( A. y e. x ( F ` y ) = y -> ( F ` x ) = x ) ) |
78 |
16 77
|
sylbid |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) -> ( A. y e. x ( y e. A -> ( F ` y ) = y ) -> ( F ` x ) = x ) ) |
79 |
78
|
ex |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( A. y e. x ( y e. A -> ( F ` y ) = y ) -> ( F ` x ) = x ) ) ) |
80 |
79
|
com23 |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( A. y e. x ( y e. A -> ( F ` y ) = y ) -> ( x e. A -> ( F ` x ) = x ) ) ) |
81 |
80
|
a2i |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A. y e. x ( y e. A -> ( F ` y ) = y ) ) -> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) ) |
82 |
81
|
a1i |
|- ( x e. On -> ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A. y e. x ( y e. A -> ( F ` y ) = y ) ) -> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) ) ) |
83 |
10 82
|
syl5bi |
|- ( x e. On -> ( A. y e. x ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( y e. A -> ( F ` y ) = y ) ) -> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) ) ) |
84 |
9 83
|
tfis2 |
|- ( x e. On -> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) ) |
85 |
84
|
com3l |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( x e. On -> ( F ` x ) = x ) ) ) |
86 |
3 85
|
mpdd |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) |
87 |
86
|
ralrimiv |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A. x e. A ( F ` x ) = x ) |
88 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
89 |
|
id |
|- ( x = z -> x = z ) |
90 |
88 89
|
eqeq12d |
|- ( x = z -> ( ( F ` x ) = x <-> ( F ` z ) = z ) ) |
91 |
90
|
rspccva |
|- ( ( A. x e. A ( F ` x ) = x /\ z e. A ) -> ( F ` z ) = z ) |
92 |
91
|
adantll |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) /\ z e. A ) -> ( F ` z ) = z ) |
93 |
23
|
ffvelrnda |
|- ( ( F Isom _E , _E ( A , B ) /\ z e. A ) -> ( F ` z ) e. B ) |
94 |
93
|
3ad2antl1 |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ z e. A ) -> ( F ` z ) e. B ) |
95 |
94
|
adantlr |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) /\ z e. A ) -> ( F ` z ) e. B ) |
96 |
92 95
|
eqeltrrd |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) /\ z e. A ) -> z e. B ) |
97 |
96
|
ex |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. A -> z e. B ) ) |
98 |
|
simpl1 |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> F Isom _E , _E ( A , B ) ) |
99 |
|
f1ofo |
|- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
100 |
|
forn |
|- ( F : A -onto-> B -> ran F = B ) |
101 |
17 99 100
|
3syl |
|- ( F Isom _E , _E ( A , B ) -> ran F = B ) |
102 |
98 101
|
syl |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ran F = B ) |
103 |
102
|
eleq2d |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. ran F <-> z e. B ) ) |
104 |
|
f1ofn |
|- ( F : A -1-1-onto-> B -> F Fn A ) |
105 |
17 104
|
syl |
|- ( F Isom _E , _E ( A , B ) -> F Fn A ) |
106 |
105
|
3ad2ant1 |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> F Fn A ) |
107 |
106
|
adantr |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> F Fn A ) |
108 |
|
fvelrnb |
|- ( F Fn A -> ( z e. ran F <-> E. w e. A ( F ` w ) = z ) ) |
109 |
107 108
|
syl |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. ran F <-> E. w e. A ( F ` w ) = z ) ) |
110 |
103 109
|
bitr3d |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. B <-> E. w e. A ( F ` w ) = z ) ) |
111 |
|
fveq2 |
|- ( x = w -> ( F ` x ) = ( F ` w ) ) |
112 |
|
id |
|- ( x = w -> x = w ) |
113 |
111 112
|
eqeq12d |
|- ( x = w -> ( ( F ` x ) = x <-> ( F ` w ) = w ) ) |
114 |
113
|
rspcv |
|- ( w e. A -> ( A. x e. A ( F ` x ) = x -> ( F ` w ) = w ) ) |
115 |
114
|
a1i |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( w e. A -> ( A. x e. A ( F ` x ) = x -> ( F ` w ) = w ) ) ) |
116 |
|
simpr |
|- ( ( ( F ` w ) = w /\ ( F ` w ) = z ) -> ( F ` w ) = z ) |
117 |
|
simpl |
|- ( ( ( F ` w ) = w /\ ( F ` w ) = z ) -> ( F ` w ) = w ) |
118 |
116 117
|
eqtr3d |
|- ( ( ( F ` w ) = w /\ ( F ` w ) = z ) -> z = w ) |
119 |
118
|
adantl |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ w e. A ) /\ ( ( F ` w ) = w /\ ( F ` w ) = z ) ) -> z = w ) |
120 |
|
simplr |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ w e. A ) /\ ( ( F ` w ) = w /\ ( F ` w ) = z ) ) -> w e. A ) |
121 |
119 120
|
eqeltrd |
|- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ w e. A ) /\ ( ( F ` w ) = w /\ ( F ` w ) = z ) ) -> z e. A ) |
122 |
121
|
exp43 |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( w e. A -> ( ( F ` w ) = w -> ( ( F ` w ) = z -> z e. A ) ) ) ) |
123 |
115 122
|
syldd |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( w e. A -> ( A. x e. A ( F ` x ) = x -> ( ( F ` w ) = z -> z e. A ) ) ) ) |
124 |
123
|
com23 |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( A. x e. A ( F ` x ) = x -> ( w e. A -> ( ( F ` w ) = z -> z e. A ) ) ) ) |
125 |
124
|
imp |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( w e. A -> ( ( F ` w ) = z -> z e. A ) ) ) |
126 |
125
|
rexlimdv |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( E. w e. A ( F ` w ) = z -> z e. A ) ) |
127 |
110 126
|
sylbid |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. B -> z e. A ) ) |
128 |
97 127
|
impbid |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. A <-> z e. B ) ) |
129 |
128
|
eqrdv |
|- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> A = B ) |
130 |
87 129
|
mpdan |
|- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A = B ) |