Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of BellMachover p. 469. (Contributed by NM, 3-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | ordn2lp | |- ( Ord A -> -. ( A e. B /\ B e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr | |- ( Ord A -> -. A e. A ) |
|
2 | ordtr | |- ( Ord A -> Tr A ) |
|
3 | trel | |- ( Tr A -> ( ( A e. B /\ B e. A ) -> A e. A ) ) |
|
4 | 2 3 | syl | |- ( Ord A -> ( ( A e. B /\ B e. A ) -> A e. A ) ) |
5 | 1 4 | mtod | |- ( Ord A -> -. ( A e. B /\ B e. A ) ) |