Metamath Proof Explorer


Theorem ordn2lp

Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of BellMachover p. 469. (Contributed by NM, 3-Apr-1994)

Ref Expression
Assertion ordn2lp
|- ( Ord A -> -. ( A e. B /\ B e. A ) )

Proof

Step Hyp Ref Expression
1 ordirr
 |-  ( Ord A -> -. A e. A )
2 ordtr
 |-  ( Ord A -> Tr A )
3 trel
 |-  ( Tr A -> ( ( A e. B /\ B e. A ) -> A e. A ) )
4 2 3 syl
 |-  ( Ord A -> ( ( A e. B /\ B e. A ) -> A e. A ) )
5 1 4 mtod
 |-  ( Ord A -> -. ( A e. B /\ B e. A ) )