Metamath Proof Explorer


Theorem ordom

Description: The class of finite ordinals _om is ordinal. Theorem 7.32 of TakeutiZaring p. 43. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ordom
|- Ord _om

Proof

Step Hyp Ref Expression
1 trom
 |-  Tr _om
2 omsson
 |-  _om C_ On
3 ordon
 |-  Ord On
4 trssord
 |-  ( ( Tr _om /\ _om C_ On /\ Ord On ) -> Ord _om )
5 1 2 3 4 mp3an
 |-  Ord _om