| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brinxp |  |-  ( ( A e. Q. /\ B e. Q. ) -> ( A  A (  | 
						
							| 2 |  | df-ltnq |  |-   | 
						
							| 3 | 2 | breqi |  |-  ( A  A (  | 
						
							| 4 | 1 3 | bitr4di |  |-  ( ( A e. Q. /\ B e. Q. ) -> ( A  A  | 
						
							| 5 |  | relxp |  |-  Rel ( N. X. N. ) | 
						
							| 6 |  | elpqn |  |-  ( A e. Q. -> A e. ( N. X. N. ) ) | 
						
							| 7 |  | 1st2nd |  |-  ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( A e. Q. -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) | 
						
							| 9 |  | elpqn |  |-  ( B e. Q. -> B e. ( N. X. N. ) ) | 
						
							| 10 |  | 1st2nd |  |-  ( ( Rel ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) | 
						
							| 11 | 5 9 10 | sylancr |  |-  ( B e. Q. -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) | 
						
							| 12 | 8 11 | breqan12d |  |-  ( ( A e. Q. /\ B e. Q. ) -> ( A  <. ( 1st ` A ) , ( 2nd ` A ) >. . ) ) | 
						
							| 13 |  | ordpipq |  |-  ( <. ( 1st ` A ) , ( 2nd ` A ) >. . <-> ( ( 1st ` A ) .N ( 2nd ` B ) )  | 
						
							| 14 | 12 13 | bitrdi |  |-  ( ( A e. Q. /\ B e. Q. ) -> ( A  ( ( 1st ` A ) .N ( 2nd ` B ) )  | 
						
							| 15 | 4 14 | bitr3d |  |-  ( ( A e. Q. /\ B e. Q. ) -> ( A  ( ( 1st ` A ) .N ( 2nd ` B ) )  |