Metamath Proof Explorer


Theorem ordsson

Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of TakeutiZaring p. 38. (Contributed by NM, 18-May-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsson
|- ( Ord A -> A C_ On )

Proof

Step Hyp Ref Expression
1 ordon
 |-  Ord On
2 ordeleqon
 |-  ( Ord A <-> ( A e. On \/ A = On ) )
3 2 biimpi
 |-  ( Ord A -> ( A e. On \/ A = On ) )
4 3 adantr
 |-  ( ( Ord A /\ Ord On ) -> ( A e. On \/ A = On ) )
5 ordsseleq
 |-  ( ( Ord A /\ Ord On ) -> ( A C_ On <-> ( A e. On \/ A = On ) ) )
6 4 5 mpbird
 |-  ( ( Ord A /\ Ord On ) -> A C_ On )
7 1 6 mpan2
 |-  ( Ord A -> A C_ On )