Step |
Hyp |
Ref |
Expression |
1 |
|
elong |
|- ( A e. _V -> ( A e. On <-> Ord A ) ) |
2 |
1
|
biimprd |
|- ( A e. _V -> ( Ord A -> A e. On ) ) |
3 |
2
|
anim1d |
|- ( A e. _V -> ( ( Ord A /\ B e. On ) -> ( A e. On /\ B e. On ) ) ) |
4 |
|
onsssuc |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) |
5 |
3 4
|
syl6 |
|- ( A e. _V -> ( ( Ord A /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) ) |
6 |
|
annim |
|- ( ( B e. On /\ -. A e. _V ) <-> -. ( B e. On -> A e. _V ) ) |
7 |
|
ssexg |
|- ( ( A C_ B /\ B e. On ) -> A e. _V ) |
8 |
7
|
ex |
|- ( A C_ B -> ( B e. On -> A e. _V ) ) |
9 |
|
elex |
|- ( A e. suc B -> A e. _V ) |
10 |
9
|
a1d |
|- ( A e. suc B -> ( B e. On -> A e. _V ) ) |
11 |
8 10
|
pm5.21ni |
|- ( -. ( B e. On -> A e. _V ) -> ( A C_ B <-> A e. suc B ) ) |
12 |
6 11
|
sylbi |
|- ( ( B e. On /\ -. A e. _V ) -> ( A C_ B <-> A e. suc B ) ) |
13 |
12
|
expcom |
|- ( -. A e. _V -> ( B e. On -> ( A C_ B <-> A e. suc B ) ) ) |
14 |
13
|
adantld |
|- ( -. A e. _V -> ( ( Ord A /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) ) |
15 |
5 14
|
pm2.61i |
|- ( ( Ord A /\ B e. On ) -> ( A C_ B <-> A e. suc B ) ) |