| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtri2or2 |  |-  ( ( Ord B /\ Ord C ) -> ( B C_ C \/ C C_ B ) ) | 
						
							| 2 |  | ssequn1 |  |-  ( B C_ C <-> ( B u. C ) = C ) | 
						
							| 3 |  | sseq2 |  |-  ( ( B u. C ) = C -> ( A C_ ( B u. C ) <-> A C_ C ) ) | 
						
							| 4 | 2 3 | sylbi |  |-  ( B C_ C -> ( A C_ ( B u. C ) <-> A C_ C ) ) | 
						
							| 5 |  | olc |  |-  ( A C_ C -> ( A C_ B \/ A C_ C ) ) | 
						
							| 6 | 4 5 | biimtrdi |  |-  ( B C_ C -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) | 
						
							| 7 |  | ssequn2 |  |-  ( C C_ B <-> ( B u. C ) = B ) | 
						
							| 8 |  | sseq2 |  |-  ( ( B u. C ) = B -> ( A C_ ( B u. C ) <-> A C_ B ) ) | 
						
							| 9 | 7 8 | sylbi |  |-  ( C C_ B -> ( A C_ ( B u. C ) <-> A C_ B ) ) | 
						
							| 10 |  | orc |  |-  ( A C_ B -> ( A C_ B \/ A C_ C ) ) | 
						
							| 11 | 9 10 | biimtrdi |  |-  ( C C_ B -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) | 
						
							| 12 | 6 11 | jaoi |  |-  ( ( B C_ C \/ C C_ B ) -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) | 
						
							| 13 | 1 12 | syl |  |-  ( ( Ord B /\ Ord C ) -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) | 
						
							| 14 |  | ssun |  |-  ( ( A C_ B \/ A C_ C ) -> A C_ ( B u. C ) ) | 
						
							| 15 | 13 14 | impbid1 |  |-  ( ( Ord B /\ Ord C ) -> ( A C_ ( B u. C ) <-> ( A C_ B \/ A C_ C ) ) ) |