| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtri2or2 |
|- ( ( Ord B /\ Ord C ) -> ( B C_ C \/ C C_ B ) ) |
| 2 |
|
ssequn1 |
|- ( B C_ C <-> ( B u. C ) = C ) |
| 3 |
|
sseq2 |
|- ( ( B u. C ) = C -> ( A C_ ( B u. C ) <-> A C_ C ) ) |
| 4 |
2 3
|
sylbi |
|- ( B C_ C -> ( A C_ ( B u. C ) <-> A C_ C ) ) |
| 5 |
|
olc |
|- ( A C_ C -> ( A C_ B \/ A C_ C ) ) |
| 6 |
4 5
|
biimtrdi |
|- ( B C_ C -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) |
| 7 |
|
ssequn2 |
|- ( C C_ B <-> ( B u. C ) = B ) |
| 8 |
|
sseq2 |
|- ( ( B u. C ) = B -> ( A C_ ( B u. C ) <-> A C_ B ) ) |
| 9 |
7 8
|
sylbi |
|- ( C C_ B -> ( A C_ ( B u. C ) <-> A C_ B ) ) |
| 10 |
|
orc |
|- ( A C_ B -> ( A C_ B \/ A C_ C ) ) |
| 11 |
9 10
|
biimtrdi |
|- ( C C_ B -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) |
| 12 |
6 11
|
jaoi |
|- ( ( B C_ C \/ C C_ B ) -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) |
| 13 |
1 12
|
syl |
|- ( ( Ord B /\ Ord C ) -> ( A C_ ( B u. C ) -> ( A C_ B \/ A C_ C ) ) ) |
| 14 |
|
ssun |
|- ( ( A C_ B \/ A C_ C ) -> A C_ ( B u. C ) ) |
| 15 |
13 14
|
impbid1 |
|- ( ( Ord B /\ Ord C ) -> ( A C_ ( B u. C ) <-> ( A C_ B \/ A C_ C ) ) ) |